Share:
Share this content in WeChat
X
Review
The progress and status of MRI in post concussion syndrome
YAN Jiahao  HUANG Wenjing  ZHANG Jing 

Cite this article as: YAN J H, HUANG W J, ZHANG J. The progress and status of MRI in post concussion syndrome[J]. Chin J Magn Reson Imaging, 2024, 15(2): 202-207. DOI:10.12015/issn.1674-8034.2024.02.033.


[Abstract] Post concussion syndrome (PCS) is the most common chronic sequelae after brain injury. At present, the mechanism of injury of PCS involves a variety of neuropathophysiological processes and is still unclear. More and more MRI techniques, such as diffusion tensor imaging (DTI), perfusion weighted imaging (PWI), hydrogen proton magnetic resonance spectroscopy (1H-MRS) have being used to explore the relationship between neuropathophysiological changes and clinical symptoms of PCS from acute to chronic phase. In this review, in order to gain a deeper understanding of their underlying neuropathological mechanisms from different perspectives, we using various MRI methods in PCS to serve the diagnosis, treatment, and prognosis of diseases by the different stages of patient injury and the severity of symptoms.
[Keywords] post concussion syndrome;magnetic resonance imaging;structural magnetic resonance imaging;functional magnetic resonance imaging;multimodal magnetic resonance imaging;pathophysiology

YAN Jiahao1, 2, 3   HUANG Wenjing1, 2, 3   ZHANG Jing1, 2, 3*  

1 Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China

2 Second Clinical School, Lanzhou University, Lanzhou 730000, China

3 Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China

Corresponding author: ZHANG J, E-mail: lztong2001@163.com

Conflicts of interest   None.

Received  2023-08-23
Accepted  2024-02-05
DOI: 10.12015/issn.1674-8034.2024.02.033
Cite this article as: YAN J H, HUANG W J, ZHANG J. The progress and status of MRI in post concussion syndrome[J]. Chin J Magn Reson Imaging, 2024, 15(2): 202-207. DOI:10.12015/issn.1674-8034.2024.02.033.

[1]
TEMKIN N, MACHAMER J, DIKMEN S, et al. Risk factors for high symptom burden three months after traumatic brain injury and implications for clinical trial design: A transforming research and clinical knowledge in traumatic brain injury study[J]. J Neurotrauma, 2022, 39(21-22): 1524-1532. DOI: 10.1089/neu.2022.0113.
[2]
SHAFI R, CRAWLEY A P, TARTAGLIA M C, et al. Sex-specific differences in resting-state functional connectivity of large-scale networks in postconcussion syndrome[J/OL]. Sci Rep, 2020, 10(1): 21982 [2023-08-23]. https://www.nature.com/articles/s41598-020-77137-4. DOI: 10.1038/s41598-020-77137-4.
[3]
MCINTYRE M, AMIRI M, KUMBHARE D. Postconcussion syndrome: A diagnosis of past diagnostic and statistical manual of mental disorders[J]. Am J Phys Med Rehabil, 2021, 100(2): 193-195. DOI: 10.1097/PHM.0000000000001586.
[4]
DELMONICO R L, THEODORE B R, SANDEL M E, et al. Prevalence of depression and anxiety disorders following mild traumatic brain injury[J]. PM R, 2022, 14(7): 753-763. DOI: 10.1002/pmrj.12657.
[5]
WONG J K Y, CHURCHILL N W, GRAHAM S J, et al. Altered connectivity of default mode and executive control networks among female patients with persistent post-concussion symptoms[J]. Brain Inj, 2023, 37(2): 147-158. DOI: 10.1080/02699052.2022.2163290.
[6]
SHLOSBERG D, BENIFLA M, KAUFER D, et al. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury[J]. Nat Rev Neurol, 2010, 6(7): 393-403. DOI: 10.1038/nrneurol.2010.74.
[7]
ACOSTA C H, CLEMONS G A, CITADIN C T, et al. A role for protein arginine methyltransferase 7 in repetitive and mild traumatic brain injury[J/OL]. Neurochem Int, 2023, 166: 105524 [2023-08-23]. https://linkinghub.elsevier.com/retrieve/pii/S0197-0186(23)00052-9. DOI: 10.1016/j.neuint.2023.105524.
[8]
GIZA C C, HOVDA D A. The new neurometabolic cascade of concussion[J]. Neurosurgery, 2014; 75(Suppl 4): S24-S33. DOI: 10.1227/NEU.0000000000000505.
[9]
HOWELL D R, SOUTHARD J. The molecular pathophysiology of concussion[J]. Clin Sports Med, 2021, 40(1): 39-51. DOI: 10.1016/j.csm.2020.08.001.
[10]
MADHAVAN R, JOEL S E, MULLICK R, et al. Longitudinal resting state functional connectivity predicts clinical outcome in mild traumatic brain injury[J]. J Neurotrauma, 2019, 36(5): 650-656. DOI: 10.1089/neu.2018.5739.
[11]
MCINNES K, FRIESEN C L, MACKENZIE D E, et al. Mild traumatic brain injury (mTBI) and chronic cognitive impairment: A scoping review[J/OL]. PLoS One, 2019, 14(6): e0218423 [2023-08-23]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218423. DOI: 10.1371/journal.pone.0218423.
[12]
CHEN Q, CHEN X, XU L, et al. Traumatic axonal injury: neuropathological features, postmortem diagnostic methods, and strategies[J]. Forensic Sci Med Pathol, 2022, 18(4): 530-544. DOI: 10.1007/s12024-022-00522-0.
[13]
LIPPA S M, YEH P H, OLLINGER J, et al. White matter integrity relates to cognition in service members and veterans after complicated mild, moderate, and severe traumatic brain injury, but not uncomplicated mild traumatic brain injury[J]. J Neurotrauma, 2023, 40(3-4): 260-273. DOI: 10.1089/neu.2022.0276.
[14]
DENNIS E L, NEWSOME M R, LINDSEY H M, et al. Altered lateralization of the cingulum in deployment-related traumatic brain injury: An ENIGMA military-relevant brain injury study[J]. Hum Brain Mapp, 2023, 44(5): 1888-1900. DOI: 10.1002/hbm.26179.
[15]
PANKATZ L, ROJCZYK P, SEITZ-HOLLAND J, et al. Adverse outcome following mild traumatic brain injury is associated with microstructure alterations at the gray and white matter boundary[J]. J Clin Med, 2023, 12(16): 5415-5415. DOI: 10.3390/jcm12165415.
[16]
GRANT M, LIU J, WINTERMARK M, et al. Current state of diffusion-weighted imaging and diffusion tensor imaging for traumatic brain injury prognostication[J]. Neuroimaging Clin N Am, 2023, 33(2): 279-297. DOI: 10.1016/j.nic.2023.01.004.
[17]
YIN B, LI D D, HUANG H, et al. Longitudinal changes in diffusion tensor imaging following mild traumatic brain injury and correlation with outcome[J/OL]. Front Neural Circuits, 2019, 13: 28 [2023-08-23]. https://www.frontiersin.org/articles/10.3389/fncir.2019.00028/full. DOI: 10.3389/fncir.2019.00028.
[18]
HUANG S, HUANG C, LI M, et al. White Matter Abnormalities and cognitive deficit after mild traumatic brain injury: Comparing DTI, DKI, and NODDI[J/OL]. Front Neurol, 2022, 13: 803066 [2023-08-23]. https://www.frontiersin.org/articles/10.3389/fneur.2022.803066/full. DOI: 10.3389/fneur.2022.803066.
[19]
MITO R, PARKER D M, ABBOTT D F, et al. White matter abnormalities characterize the acute stage of sports-related mild traumatic brain injury[J/OL]. Brain Commun, 2022, 4(4): fcac208 [2023-08-23]. https://academic.oup.com/braincomms/article/4/4/fcac208/6668879?login=false. DOI: 10.1093/braincomms/fcac208.
[20]
JOHNSON V E, STEWART W, SMITH D H. Axonal pathology in traumatic brain injury[J]. Exp Neurol, 2012, 246: 35-43. DOI: 10.1016/j.expneurol.2012.01.013.
[21]
WANG M L, WEI X E, YU M M, et al. Cognitive impairment in mild traumatic brain injury: a diffusion kurtosis imaging and volumetric study[J]. Acta Radiol, 2022, 63(4): 504-512. DOI: 10.1177/0284185121998317.
[22]
GAZDZINSKI L M, MELLERUP M, WANG T, et al. White matter changes caused by mild traumatic brain injury in mice evaluated using neurite orientation dispersion and density imaging[J]. J Neurotrauma, 2020, 37(16): 1818-1828. DOI: 10.1089/neu.2020.6992.
[23]
ROMEU-MEJIA R, GIZA C C, GOLDMAN J T. Concussion pathophysiology and injury biomechanics[J]. Curr Rev Musculoskelet Med, 2019, 12(2): 105-116. DOI: 10.1007/s12178-019-09536-8.
[24]
NAUMENKO Y, YURYSHINETZ I, ZABENKO Y, et al. Mild traumatic brain injury as a pathological process[J/OL]. Heliyon, 2023, 9(7): e18342 [2023-08-23]. https://linkinghub.elsevier.com/retrieve/pii/S2405-8440(23)05550-0. DOI: 10.1016/j.heliyon.2023.e18342.
[25]
EINARSEN C E, MOEN K G, HÅBERG AK, et al. Patients with mild traumatic brain injury recruited from both hospital and primary care settings: A controlled longitudinal magnetic resonance imaging study[J]. J Neurotrauma, 2019, 36(22): 3172-3182. DOI: 10.1089/neu.2018.6360.
[26]
IRIMIA A, NGO V, CHAUDHARI N N, et al. White matter degradation near cerebral microbleeds is associated with cognitive change after mild traumatic brain injury[J]. Neurobiol Aging, 2022, 120: 68-80. DOI: 10.1016/j.neurobiolaging.2022.08.010.
[27]
PAPADAKI E, KAVROULAKIS E, MANOLITSI K, et al. Cerebral perfusion disturbances in chronic mild traumatic brain injury correlate with psychoemotional outcomes[J]. Brain Imaging Behav, 2021, 15(3): 1438-1449. DOI: 10.1007/s11682-020-00343-1.
[28]
FREIRE M A M, ROCHA G S, BITTENCOURT L O, et al. Cellular and molecular pathophysiology of traumatic brain injury: what have we learned so far?[J/OL]. Biology (Basel), 2023, 12(8): 1139 [2023-08-23]. https://www.mdpi.com/2079-7737/12/8/1139. DOI: 10.3390/biology12081139.
[29]
YASEN A L, LIM M M, WEYMANN K B, et al. Excitability, inhibition, and neurotransmitter levels in the motor cortex of symptomatic and asymptomatic individuals following mild traumatic brain injury[J/OL]. Front Neurol, 2020, 11: 683 [2023-08-23]. https://www.frontiersin.org/articles/10.3389/fneur.2020.00683/full. DOI: 10.3389/fneur.2020.00683.
[30]
JOYCE J M, LA P L, WALKER R, et al. Magnetic resonance spectroscopy of traumatic brain injury and subconcussive hits: A systematic review and meta-analysis[J]. J Neurotrauma, 2022, 39(21-22): 1455-1476. DOI: 10.1089/neu.2022.0125.
[31]
CHEN A M, GERHALTER T, DEHKHARGHANI S, et al. Replicability of proton MR spectroscopic imaging findings in mild traumatic brain injury: Implications for clinical applications[J/OL]. Neuroimage Clin, 2023, 37: 103325 [2023-08-23]. https://linkinghub.elsevier.com/retrieve/pii/S2213-1582(23)00014-1. DOI: 10.1016/j.nicl.2023.103325.
[32]
MENSHCHIKOV P, IVANTSOVA A, MANZHURTSEV A, et al. Separate N-acetyl aspartyl glutamate, N-acetyl aspartate, aspartate, and glutamate quantification after pediatric mild traumatic brain injury in the acute phase[J]. Magn Reson Med, 2020, 84(6): 2918-2931. DOI: 10.1002/mrm.28332.
[33]
PALACIOS E M, OWEN J P, YUH E L, et al. The evolution of white matter microstructural changes after mild traumatic brain injury: A longitudinal DTI and NODDI study[J/OL]. Sci Adv, 2020, 6(32): eaaz6892 [2023-08-23]. https://www.science.org/doi/10.1126/sciadv.aaz6892. DOI: 10.1126/sciadv.aaz6892.
[34]
OEHR L E, YANG J Y, CHEN J, et al. Investigating white matter tract microstructural changes at six-twelve weeks following mild traumatic brain injury: A combined diffusion tensor imaging and neurite orientation dispersion and density imaging study[J]. J Neurotrauma, 2021, 38(16): 2255-2263. DOI: 10.1089/neu.2020.7310.
[35]
OH S S, LEE E H, KIM J H, et al. The use of dynamic contrast-enhanced magnetic resonance imaging for the evaluation of blood-brain barrier disruption in traumatic brain injury: What is the evidence[J/OL]? Brain Sci, 2021, 11(6): 775 [2023-08-23]. https://www.mdpi.com/2076-3425/11/6/775. DOI: 10.3390/brainsci11060775.
[36]
YOO R E, CHOI S H, OH B M, et al. Quantitative dynamic contrast-enhanced MR imaging shows widespread blood-brain barrier disruption in mild traumatic brain injury patients with post-concussion syndrome[J]. Eur Radiol, 2019, 29(3): 1308-1317. DOI: 10.1007/s00330-018-5656-z.
[37]
HUANG X, HUSSAIN B, CHANG J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms[J]. CNS Neurosci Ther. 2021; 27(1): 36-47. DOI: 10.1111/cns.13569.
[38]
YOEN H, YOO R E, CHOI S H, et al. Blood-brain barrier disruption in mild traumatic brain injury patients with post-concussion syndrome: Evaluation with region-based quantification of dynamic contrast-enhanced MR imaging parameters using automatic whole-brain segmentation[J]. Korean J Radiol, 2021, 22(1): 118-130. DOI: 10.3348/kjr.2020.0016.
[39]
WARE J B, SINHA S, MORRISON J, et al. Dynamic contrast enhanced MRI for characterization of blood-brain-barrier dysfunction after traumatic brain injury[J/OL]. Neuroimage Clin, 2022, 36: 103236 [2023-08-23]. https://linkinghub.elsevier.com/retrieve/pii/S2213-1582(22)00301-1. DOI: 10.1016/j.nicl.2022.103236.
[40]
BRETT B L, SAVITZ J, NITTA M, et al. Systemic inflammation moderates the association of prior concussion with hippocampal volume and episodic memory in high school and collegiate athletes[J]. Brain Behav Immun, 2020, 89: 380-388. DOI: 10.1016/j.bbi.2020.07.024.
[41]
MALIK S, ALNAJI O, MALIK M, et al. Inflammatory cytokines associated with mild traumatic brain injury and clinical outcomes: a systematic review and meta-analysis[J/OL]. Front Neurol, 2023, 14: 1123407 [2023-08-23]. https://www.frontiersin.org/articles/10.3389/fneur.2023.1123407/full. DOI: 10.3389/fneur.2023.1123407.
[42]
BOLTE A C, DUTTA A B, HURT M E, et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis[J]. Nat Commun, 2020, 11(1): 4524 [2023-08-23]. https://www.nature.com/articles/s41467-020-18113-4. DOI: 10.1038/s41467-020-18113-4.
[43]
FERRARA M, BERTOZZI G, VOLONNINO G, et al. Glymphatic system a window on TBI pathophysiology: A systematic review[J]. Int J Mol Sci, 2022, 23(16): 9138 [2023-08-23]. https://www.mdpi.com/1422-0067/23/16/9138. DOI: 10.3390/ijms23169138.
[44]
PIANTINO J A, ILIFF J J, LIM M M. The bidirectional link between sleep disturbances and traumatic brain injury symptoms: A role for glymphatic dysfunction?[J]. Biol Psychiatry, 2022, 91(5): 478-487. DOI: 10.1016/j.biopsych.2021.06.025.
[45]
YANG D X, SUN Z, YU M M, et al. Associations of MRI-derived glymphatic system impairment with global white matter damage and cognitive impairment in mild traumatic brain injury: A DTI-ALPS study[J]. J Magn Reson Imaging, 2024, 59(2): 639-647. DOI: 10.1002/jmri.28797.
[46]
PARK J H, BAE Y J, KIM J S, et al. Glymphatic system evaluation using diffusion tensor imaging in patients with traumatic brain injury[J]. Neuroradiology, 2023, 65(3): 551-557. DOI: 10.1007/s00234-022-03073-x.
[47]
ZHAO P, ZHU P, ZHANG D, et al. Sex Differences in cerebral blood flow and serum inflammatory cytokines and their relationships in mild traumatic brain injury[J/OL]. Front Neurol, 2022, 12: 755152 [2023-08-23]. https://www.frontiersin.org/articles/10.3389/fneur.2021.755152/full. DOI: 10.3389/fneur.2021.755152.
[48]
MCKEE A C, DANESHVAR D H. The neuropathology of traumatic brain injury[J]. Handb Clin Neurol, 2015, 127: 45-66. DOI: 10.1016/B978-0-444-52892-6.00004-0.
[49]
SULTANA T, HASAN M A, KANG X, et al. Neural mechanisms of emotional health in traumatic brain injury patients undergoing rTMS treatment[J/OL]. Mol Psychiatry, 2023 [2023-08-23]. https://www.nature.com/articles/s41380-023-02159-z. DOI: 10.1038/s41380-023-02159-z.
[50]
KHETANI A, ROHR C S, SOJOUDI A, et al. Alteration in cerebral activation during a working memory task after pediatric mild traumatic brain injury: A prospective controlled cohort study[J]. J Neurotrauma, 2019, 36(23): 3274-3283. DOI: 10.1089/neu.2018.6117.
[51]
ASTAFIEV S V, ZINN K L, SHULMAN G L, et al. Exploring the physiological correlates of chronic mild traumatic brain injury symptoms[J]. Neuroimage Clin, 2016, 11: 10-19. DOI: 10.1016/j.nicl.2016.01.004.
[52]
D'SOUZA M M, KUMAR M, CHOUDHARY A, et al. Alterations of connectivity patterns in functional brain networks in patients with mild traumatic brain injury: A longitudinal resting-state functional magnetic resonance imaging study[J]. Neuroradiol J, 2020, 33(2): 186-197. DOI: 10.1177/1971400920901706.
[53]
AMIR J, NAIR J K R, DEL CARPIO-O'DONOVAN R, et al. Atypical resting state functional connectivity in mild traumatic brain injury[J/OL]. Brain Behav. 2021, 11(8): e2261 [2023-08-23]. https://onlinelibrary.wiley.com/doi/10.1002/brb3.2261. DOI: 10.1002/brb3.2261.
[54]
IYER K K, BARLOW K M, BROOKS B, et al. Relating brain connectivity with persistent symptoms in pediatric concussion[J]. Ann Clin Transl Neurol, 2019, 6(5): 954-961. DOI: 10.1002/acn3.764.
[55]
LI F, LU L, SHANG S, et al. Altered static and dynamic functional network connectivity in post-traumatic headache[J/OL]. J Headache Pain. 2021, 22(1): 137 [2023-08-23]. https://thejournalofheadacheandpain.biomedcentral.com/articles/10.1186/s10194-021-01348-x. DOI: 10.1186/s10194-021-01348-x.
[56]
KUCEYESKI A F, JAMISON K W, OWEN J P, et al. Longitudinal increases in structural connectome segregation and functional connectome integration are associated with better recovery after mild TBI[J]. Hum Brain Mapp, 2019, 40(15): 4441-4456. DOI: 10.1002/hbm.24713.
[57]
CHAMPAGNE A A, COVERDALE N S, ROSS A, et al. Multi-modal normalization of resting-state using local physiology reduces changes in functional connectivity patterns observed in mTBI patients[J/OL]. Neuroimage Clin, 2020, 26: 102204 [2023-08-23]. https://linkinghub.elsevier.com/retrieve/pii/S2213-1582(20)30041-3. DOI: 10.1016/j.nicl.2020.102204.

PREV Research progress of magnetic resonance imaging artificial intelligence technology in the treatment of pituitary neuroendocrine tumors
NEXT Progress in the application of cardiac magnetic resonance in hypertensive heart disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn