Share:
Share this content in WeChat
X
Review
Progress in the application of cardiac magnetic resonance in hypertensive heart disease
CHENG Changxin  WANG Bo  ZHANG Yan  CHEN Linyu  SA Lu  ZHANG Yingcong  LI Chenrong 

Cite this article as: CHENG C X, WANG B, ZHANG Y, et al. Progress in the application of cardiac magnetic resonance in hypertensive heart disease[J]. Chin J Magn Reson Imaging, 2024, 15(2): 208-212. DOI:10.12015/issn.1674-8034.2024.02.034.


[Abstract] As the most important cause of various cardiovascular diseases, hypertension can cause a series of adaptive changes such as heart structure changes and coronary microcirculation disorders. Therefore, it is particularly important to evaluate the cardiac structure and function of hypertensive patients. Echocardiography is commonly used in clinical evaluation of cardiac structure and function, but cardiac magnetic resonance (CMR) has the advantages of better soft tissue resolution and multi-functional, multi-parameter imaging. CMR cine imaging, T2WI, perfusion imaging, early enhancement and late gadolinium enhancement (LGE) T1 mapping before and after enhancement sequences can be used to comprehensive assessment of hypertensive heart disease (HHD). By summarizing these techniques, this paper conductes quantitative and qualitative analysis on left ventricular hypertrophy (LVH), myocardial fibrosis, reduced systolic and diastolic function, and coronary microcirculation disturbance caused by hypertension, which is of great significance for guiding clinical decision-making and improving patient prognosis, and is expected to provide reference direction for future research.
[Keywords] magnetic resonance imaging;cardiac magnetic resonance;hypertensive heart disease;left ventricular hypertrophy;myocardial fibrosis;myocardial strain;T1 mapping

CHENG Changxin1   WANG Bo2*   ZHANG Yan2   CHEN Linyu1   SA Lu1   ZHANG Yingcong1   LI Chenrong1  

1 College of Medicine, Kunming University of Science and Technology, Kunming 650000, China

2 Department of MRI, the Affiliated Hospital of Kunming University of Science and Technology, the First People's Hospital of Yunnan Province, Kunming 650032, China

Corresponding author: WANG B, E-mail: wangbo871@sina.com

Conflicts of interest   None.

Received  2023-11-17
Accepted  2024-02-01
DOI: 10.12015/issn.1674-8034.2024.02.034
Cite this article as: CHENG C X, WANG B, ZHANG Y, et al. Progress in the application of cardiac magnetic resonance in hypertensive heart disease[J]. Chin J Magn Reson Imaging, 2024, 15(2): 208-212. DOI:10.12015/issn.1674-8034.2024.02.034.

[1]
NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants[J]. Lancet, 2021, 398(10304): 957-980. DOI: 10.1016/S0140-6736(21)01330-1.
[2]
ROTH G A, MENSAH G A, JOHNSON C O, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76(25): 2982-3021. DOI: 10.1016/j.jacc.2020.11.010.
[3]
GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1223-1249. DOI: 10.1016/S0140-6736(20)30752-2.
[4]
ISMAIL T F, FREY S, KAUFMANN B A, et al. Hypertensive heart disease-the imaging perspective[J]. J Clin Med, 2023, 12(9): 3122. DOI: 10.3390/jcm12093122.
[5]
SCHUMANN C L, JAEGER N R, KRAMER C M. Recent advances in imaging of hypertensive heart disease[J/OL]. Curr Hypertens Rep, 2019, 21(1): 3 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/30637533/. DOI: 10.1007/s11906-019-0910-6.
[6]
JEROSCH-HEROLD M, COELHO-FILHO O. Cardiac MRI T1 and T2 mapping: a new crystal ball?[J]. Radiology, 2022, 305(2): 327-328. DOI: 10.1148/radiol.221395.
[7]
CAU R, BASSAREO P, SURI J S, et al. The emerging role of atrial strain assessed by cardiac MRI in different cardiovascular settings: an up-to-date review[J]. Eur Radiol, 2022, 32(7): 4384-4394. DOI: 10.1007/s00330-022-08598-6.
[8]
DRAZNER M H. The progression of hypertensive heart disease[J]. Circulation, 2011, 123(3): 327-334. DOI: 10.1161/CIRCULATIONAHA.108.845792.
[9]
CUSPIDI C, FACCHETTI R, BOMBELLI M, et al. High normal blood pressure and left ventricular hypertrophy echocardiographic findings from the PAMELA population[J]. Hypertension, 2019, 73(3): 612-619. DOI: 10.1161/HYPERTENSIONAHA.118.12114.
[10]
CAMELI M, MANDOLI G E, LISI E, et al. Left atrial, ventricular and atrio-ventricular strain in patients with subclinical heart dysfunction[J]. Int J Cardiovasc Imaging, 2019, 35(2): 249-258. DOI: 10.1007/s10554-018-1461-7.
[11]
NWABUO C C, VASAN R S. Pathophysiology of hypertensive heart disease: beyond left ventricular hypertrophy[J/OL]. Curr Hypertens Rep, 2020, 22(2): 11 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/32016791/. DOI: 10.1007/s11906-020-1017-9.
[12]
SAHEERA S, KRISHNAMURTHY P. Cardiovascular changes associated with hypertensive heart disease and aging[J/OL]. Cell Transplant, 2020, 29: 963689720920830 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/32393064/. DOI: 10.1177/0963689720920830.
[13]
GIORDANO C, FRANCONE M, CUNDARI G, et al. Myocardial fibrosis: morphologic patterns and role of imaging in diagnosis and prognostication[J/OL]. Cardiovasc Pathol, 2022, 56: 107391 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/34601072/. DOI: 10.1016/j.carpath.2021.107391.
[14]
GONZÁLEZ A, SCHELBERT E B, DÍEZ J, et al. Myocardial interstitial fibrosis in HeartFailure: biological and translational perspectives[J]. J Am Coll Cardiol, 2018, 71(15): 1696-1706. DOI: 10.1016/j.jacc.2018.02.021.
[15]
DÍEZ J, GONZÁLEZ A, KOVACIC J C. Myocardial interstitial fibrosis in nonischemic heart disease, part 3/4: JACC focus seminar[J]. J Am Coll Cardiol, 2020, 75(17): 2204-2218. DOI: 10.1016/j.jacc.2020.03.019.
[16]
NEMTSOVA V, VISCHER A S, BURKARD T. Hypertensive heart disease: a narrative review series-part 1: pathophysiology and microstructural changes[J/OL]. J Clin Med, 2023, 12(7): 2606 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/37048689/. DOI: 10.3390/jcm12072606.
[17]
FRANGOGIANNIS N G. Cardiac fibrosis[J]. Cardiovasc Res, 2021, 117(6): 1450-1488. DOI: 10.1093/cvr/cvaa324.
[18]
GONZÁLEZ A, RAVASSA S, LÓPEZ B, et al. Myocardial remodeling in hypertension[J]. Hypertension, 2018, 72(3): 549-558. DOI: 10.1161/HYPERTENSIONAHA.118.11125.
[19]
MEDI C, KALMAN J M, SPENCE S J, et al. Atrial electrical and structural changes associated with longstanding hypertension in humans: implications for the substrate for atrial fibrillation[J]. J Cardiovasc Electrophysiol, 2011, 22(12): 1317-1324. DOI: 10.1111/j.1540-8167.2011.02125.x.
[20]
LAU D H, SHENASA H A, SHENASA M. Hypertension, prehypertension, hypertensive heart disease, and atrial fibrillation[J]. Card Electrophysiol Clin, 2021, 13(1): 37-45. DOI: 10.1016/j.ccep.2020.11.009.
[21]
VANCHERI F, LONGO G, VANCHERI S, et al. Coronary microvascular dysfunction[J/OL]. J Clin Med, 2020, 9(9): 2880 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/32899944/. DOI: 10.3390/jcm9092880.
[22]
FRĄK W, WOJTASIŃSKA A, LISIŃSKA W, et al. Pathophysiology of cardiovascular diseases: new insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease[J/OL]. Biomedicines, 2022, 10(8): 1938 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/36009488/. DOI: 10.3390/biomedicines10081938.
[23]
ZHOU W N, BROWN J M, BAJAJ N S, et al. Hypertensive coronary microvascular dysfunction: a subclinical marker of end organ damage and heart failure[J]. Eur Heart J, 2020, 41(25): 2366-2375. DOI: 10.1093/eurheartj/ehaa191.
[24]
KRAMER C M, BARKHAUSEN J, BUCCIARELLI-DUCCI C, et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 17 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/32089132/. DOI: 10.1186/s12968-020-00607-1.
[25]
RODRIGUES J C, AMADU A M, DASTIDAR A G, et al. Comprehensive characterisation of hypertensive heart disease left ventricular phenotypes[J]. Heart, 2016, 102(20): 1671-1679. DOI: 10.1136/heartjnl-2016-309576.
[26]
ALMUTAIRI H M, BOUBERTAKH R, MIQUEL M E, et al. Myocardial deformation assessment using cardiovascular magnetic resonance-feature tracking technique[J/OL]. Br J Radiol, 2017, 90(1080): 20170072 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/28830199/. DOI: 10.1259/bjr.20170072.
[27]
WU L M, AN D L, YAO Q Y, et al. Hypertrophic cardiomyopathy and left ventricular hypertrophy in hypertensive heart disease with mildly reduced or preserved ejection fraction: insight from altered mechanics and native T1 mapping[J]. Clin Radiol, 2017, 72(10): 835-843. DOI: 10.1016/j.crad.2017.04.019.
[28]
LIU H N, WANG J J, PAN Y K, et al. Early and quantitative assessment of myocardial deformation in essential hypertension patients by using cardiovascular magnetic resonance feature tracking[J/OL]. Sci Rep, 2020, 10(1): 3582 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/32107428/. DOI: 10.1038/s41598-020-60537-x.
[29]
CHEN B H, WU R, AN D A, et al. Oxygenation-sensitive cardiovascular magnetic resonance in hypertensive heart disease with left ventricular myocardial hypertrophy and non-left ventricular myocardial hypertrophy: insight from altered mechanics and cardiac BOLD imaging[J]. J Magn Reson Imaging, 2021, 53(3): 965-966. DOI: 10.1002/jmri.27401.
[30]
AGUIAR ROSA S, THOMAS B, PIERONI M, et al. Role of cardiovascular magnetic resonance in the clinical evaluation of left ventricular hypertrophy: a 360° panorama[J]. Int J Cardiovasc Imaging, 2023, 39(4): 793-809. DOI: 10.1007/s10554-022-02774-x.
[31]
NEISIUS U, MYERSON L, FAHMY A S, et al. Cardiovascular magnetic resonance feature tracking strain analysis for discrimination between hypertensive heart disease and hypertrophic cardiomyopathy[J/OL]. PLoS One, 2019, 14(8): e0221061 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/31433823/. DOI: 10.1371/journal.pone.0221061.
[32]
SCHIAU C, LEUCUȚA D C, DUDEA S M, et al. Myocardial fibrosis as a predictor of ventricular arrhythmias in patients with non-ischemic cardiomyopathy[J]. In Vivo, 2021, 35(3): 1677-1685. DOI: 10.21873/invivo.12427.
[33]
DÍEZ J, ROSANO G M C, BUTLER J. Time to reconsider the perception and management of hypertensive heart disease[J]. Eur J Heart Fail, 2023, 25(4): 450-453. DOI: 10.1002/ejhf.2811.
[34]
ZHANG H Y, ZHU L /Y)Y, ZHAO S H, et al. Research progresses of cardiac magnetic resonance in 2022[J]. Chin J Magn Reson Imag, 2023, 14(6): 133-138, 144. DOI: 10.12015/issn.1674-8034.2023.06.024.
[35]
PEZESHKI P S, GHORASHI S M, HOUSHMAND G, et al. Feature tracking cardiac magnetic resonance imaging to assess cardiac manifestations of systemic diseases[J]. Heart Fail Rev, 2023, 28(5): 1189-1199. DOI: 10.1007/s10741-023-10321-6.
[36]
AHERNE E, CHOW K, CARR J. Cardiac T1 mapping: techniques and applications[J]. J Magn Reson Imaging, 2020, 51(5): 1336-1356. DOI: 10.1002/jmri.26866.
[37]
TADIC M, CUSPIDI C, PLEIN S, et al. Comprehensive assessment of hypertensive heart disease: cardiac magnetic resonance in focus[J]. Heart Fail Rev, 2021, 26(6): 1383-1390. DOI: 10.1007/s10741-020-09943-x.
[38]
PICHLER G, REDON J, MARTÍNEZ F, et al. Cardiac magnetic resonance-derived fibrosis, strain and molecular biomarkers of fibrosis in hypertensive heart disease[J]. J Hypertens, 2020, 38(10): 2036-2042. DOI: 10.1097/HJH.0000000000002504.
[39]
CHEN H, BRUNNER F J, ÖZDEN C, et al. Left ventricular myocardial strain responding to chronic pressure overload in patients with resistant hypertension evaluated by feature-tracking CMR[J]. Eur Radiol, 2023, 33(9): 6278-6289. DOI: 10.1007/s00330-023-09595-z.
[40]
LEE V, ZHENG Q S, TOH D F, et al. Sacubitril/valsartan versus valsartan in regressing myocardial fibrosis in hypertension: a prospective, randomized, open-label, blinded endpoint clinical trial protocol[J/OL]. Front Cardiovasc Med, 2023, 10: 1248468 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/37674806/. DOI: 10.3389/fcvm.2023.1248468.
[41]
IYER N R, LE T T, KUI M S L, et al. Markers of focal and diffuse nonischemic myocardial fibrosis are associated with adverse cardiac remodeling and prognosis in patients with hypertension: the REMODEL study[J]. Hypertension, 2022, 79(8): 1804-1813. DOI: 10.1161/HYPERTENSIONAHA.122.19225.
[42]
NGUYEN J, WEBER J, HSU B, et al. Comparing left atrial indices by CMR in association with left ventricular diastolic dysfunction and adverse clinical outcomes[J/OL]. Sci Rep, 2021, 11(1): 21331 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/34716361/. DOI: 10.1038/s41598-021-00596-w.
[43]
YAN W F, GAO Y, ZHANG Y, et al. Impact of type 2 diabetes mellitus on left ventricular diastolic function in patients with essential hypertension: evaluation by volume-time curve of cardiac magnetic resonance[J/OL]. Cardiovasc Diabetol, 2021, 20(1): 73 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/33766020/. DOI: 10.1186/s12933-021-01262-1.
[44]
KARA B, NAYMAN A, GULER I, et al. Quantitative assessment of left ventricular function and myocardial mass: a comparison of coronary CT angiography with cardiac MRI and echocardiography[J/OL]. Pol J Radiol, 2016, 81: 95-102 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/27026794/. DOI: 10.12659/PJR.895843.
[45]
HE J, SIRAJUDDIN A, LI S, et al. Heart failure with preserved ejection fraction in hypertension patients: a myocardial MR strain study[J]. J Magn Reson Imaging, 2021, 53(2): 527-539. DOI: 10.1002/jmri.27313.
[46]
DEL BUONO M G, MONTONE R A, CAMILLI M, et al. Coronary microvascular dysfunction across the spectrum of CardiovascularDiseases: JACCState-of-the-art review[J]. J Am Coll Cardiol, 2021, 78(13): 1352-1371. DOI: 10.1016/j.jacc.2021.07.042.
[47]
RAHMAN H, SCANNELL C M, DEMIR O M, et al. High-resolution cardiac magnetic resonance imaging techniques for the identification of coronary microvascular dysfunction[J]. JACC Cardiovasc Imaging, 2021, 14(5): 978-986. DOI: 10.1016/j.jcmg.2020.10.015.
[48]
SAMMUT E C, VILLA A D M, GIOVINE G D, et al. Prognostic value of quantitative stress perfusion cardiac magnetic resonance[J]. JACC Cardiovasc Imaging, 2018, 11(5): 686-694. DOI: 10.1016/j.jcmg.2017.07.022.
[49]
YANG K, YU S Q, LU M J, et al. Comparison of diagnostic accuracy of stress myocardial perfusion imaging for detecting hemodynamically significant coronary artery disease between cardiac magnetic resonance and nuclear medical imaging: a meta-analysis[J/OL]. Int J Cardiol, 2019, 293: 278-285 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/31303392/. DOI: 10.1016/j.ijcard.2019.06.054.
[50]
LI X M, JIANG L, GUO Y K, et al. The additive effects of type 2 diabetes mellitus on left ventricular deformation and myocardial perfusion in essential hypertension: a 3.0 T cardiac magnetic resonance study[J/OL]. Cardiovasc Diabetol, 2020, 19(1): 161 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/32998742/. DOI: 10.1186/s12933-020-01138-w.
[51]
ROMANO S, JUDD R M, KIM R J, et al. Prognostic implications of mitral annular plane systolic excursion in patients with hypertension and a clinical indication for cardiac magnetic resonance imaging: a multicenter study[J]. JACC Cardiovasc Imaging, 2019, 12(9): 1769-1779. DOI: 10.1016/j.jcmg.2018.10.003.
[52]
LEINER T, BOGAERT J, FRIEDRICH M G, et al. SCMR Position Paper (2020) on clinical indications for cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 76 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/33161900/. DOI: 10.1186/s12968-020-00682-4.
[53]
NIU J Q, ZENG M, WANG Y, et al. Sensitive marker for evaluation of hypertensive heart disease: extracellular volume and myocardial strain[J/OL]. BMC Cardiovasc Disord, 2020, 20(1): 292 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/32539749/. DOI: 10.1186/s12872-020-01553-7.

PREV The progress and status of MRI in post concussion syndrome
NEXT Radiographic progress of microvascular invasion in hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn