Share:
Share this content in WeChat
X
Review
Radiographic progress of microvascular invasion in hepatocellular carcinoma
SHI Jiali  XU Yuan  GUO Yu  YANG Xinmei  LIU Jianli 

Cite this article as: SHI J L, XU Y, GUO Y, et al. Radiographic progress of microvascular invasion in hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2024, 15(2): 213-218. DOI:10.12015/issn.1674-8034.2024.02.035.


[Abstract] At present, microvascular invasion (MVI) is considered to be a high-risk factor directly related to the postoperative prognosis of hepatocellular carcinoma (HCC), which is an important risk factor for whether the tumor can be resected before surgery, tumor recurrence and metastasis after surgery, and an important reference indicator for whether adjuvant therapy is required after surgery. In recent years, some emerging, non-invasive imaging techniques and radiomics methods, such as ultrasound, CT, MRI, PET/CT and radiomics, can be used to predict the vascular invasion status of HCC before surgery. Based on this, this article will sort out the relevant literature on the application of imaging technology and radiomics methods in HCC in recent years, and review the research on preoperative prediction of HCC-MVI status, aiming to further analyze the challenges of advanced imaging technology in the medical field, promote the clinical application of HCC MVI, and discuss future research directions.
[Keywords] hepatocellular carcinoma;microvascular aggression;contrast-enhanced ultrasound;energy spectrum computed tomography;magnetic resonance imaging;artificial intelligence

SHI Jiali1, 2, 3, 4   XU Yuan1, 2, 3, 4   GUO Yu1, 2, 3, 4   YANG Xinmei1, 2, 3, 4   LIU Jianli1, 3, 4*  

1 Department of Radiology, Lanzhou University Second Hospital, Lanzhou 730030, China

2 Second Clinical School, Lanzhou University, Lanzhou 730030, China

3 Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China

4 Medical Imaging Artificial Intelligence Gansu International Science and Technology Cooperation Base, Lanzhou, 730030, China

Corresponding author: LIU J L, E-mail: liujl_1219@163.com

Conflicts of interest   None.

Received  2023-10-18
Accepted  2024-01-08
DOI: 10.12015/issn.1674-8034.2024.02.035
Cite this article as: SHI J L, XU Y, GUO Y, et al. Radiographic progress of microvascular invasion in hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2024, 15(2): 213-218. DOI:10.12015/issn.1674-8034.2024.02.035.

[1]
ZHOU M G, WANG H D, ZENG X Y, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394(10204): 1145-1158. DOI: 10.1016/S0140-6736(19)30427-1.
[2]
CHEN M S. Guidelines for holistic integrative management of liver cancer(2022 abridged version)[J]. Chin J Clin Oncol, 2022, 49(17): 865-873. DOI: 10.12354/j.issn.1000-8179.2022.2022094.
[3]
XIA Y, YANG T, WANG K. Chinese expert consensus on the preventation and management of recurrent hepatocellular carcinoma after hepatic resection(2020 edition)[J]. Chin J Pract Surg, 2021, 41(1): 20-30. DOI: 10.19538/j.cjps.issn1005-2208.2021.01.03.
[4]
CONG W M, BU H, CHEN J, et al. Practice guidelines for the pathological diagnosis of primary liver cancer: 2015 update[J]. World J Gastroenterol, 2016, 22(42): 9279-9287. DOI: 10.3748/wjg.v22.i42.9279.
[5]
HE X C, AN W H, ZENG Q B, et al. Value of microvascular invasion grade in predicting the early recurrence of hepatocellular carcinoma after radical hepatectomy[J]. J Clin Hepatol, 2020, 36(8): 1757-1762. DOI: 10.3969/j.issn.1001-5256.2020.08.016.
[6]
SHENG X, JI Y, REN G P, et al. A standardized pathological proposal for evaluating microvascular invasion of hepatocellular carcinoma: a multicenter study by LCPGC[J]. Hepatol Int, 2020, 14(6): 1034-1047. DOI: 10.1007/s12072-020-10111-4.
[7]
LIU R J, WU J, ZHANG X M, et al. Value of new microvascular invasion pathological classification on the prognosis evaluation of liver cancer after liver transplantation[J]. China Ind Econ, 2021, 28(1): 53-57. DOI: 10.7507/1007-9424.202004022.
[8]
WANG H, FENG L H, QIAN Y W, et al. Does microvascular invasion in Barcelona Clinic Liver Cancer stage A multinodular hepatocellular carcinoma indicate early-stage behavior?[J/OL]. Ann Transl Med, 2019, 7(18): 428 [2023-10-17]. https://www.ncbi.nim.nih.gov/pmc/articles/PMC6803243. DOI: 10.21037/atm.2019.08.114.
[9]
ERSTAD D J, TANABE K K. Prognostic and therapeutic implications of microvascular invasion in hepatocellular carcinoma[J]. Ann Surg Oncol, 2019, 26(5): 1474-1493. DOI: 10.1245/s10434-019-07227-9.
[10]
PAWLIK T M, GLEISNER A L, ANDERS R A, et al. Preoperative assessment of hepatocellular carcinoma tumor grade using needle biopsy: implications for transplant eligibility[J]. Ann Surg, 2007, 245(3): 435-442. DOI: 10.1097/01.sla.0000250420.73854.ad.
[11]
CAO L K, CHEN J, DUAN T, et al. Diffusion kurtosis imaging (DKI) of hepatocellular carcinoma: correlation with microvascular invasion and histologic grade[J]. Quant Imaging Med Surg, 2019, 9(4): 590-602. DOI: 10.21037/qims.2019.02.14.
[12]
WEI Y, HUANG Z X, TANG H H, et al. IVIM improves preoperative assessment of microvascular invasion in HCC[J]. Eur Radiol, 2019, 29(10): 5403-5414. DOI: 10.1007/s00330-019-06088-w.
[13]
SUN J J, WANG K, ZHANG C Z, et al. Postoperative adjuvant transcatheter arterial chemoembolization after R0 hepatectomy improves outcomes of patients who have hepatocellular carcinoma with microvascular invasion[J]. Ann Surg Oncol, 2016, 23(4): 1344-1351. DOI: 10.1245/s10434-015-5008-z.
[14]
COVEY A M. Hepatocellular carcinoma: updates to screening and diagnosis[J]. J Natl Compr Canc Netw, 2018, 16(5S): 663-665. DOI: 10.6004/jnccn.2018.0052.
[15]
WILSON A, LIM A K P. Microvascular imaging: new Doppler technology for assessing focal liver lesions. Is it useful?[J/OL]. Clin Radiol, 2022, 77(12): e807-e820 [2023-10-12]. https://www.ncbi.nim.nih.gov/pmc/articles/PMC5703936. DOI: 10.1016/j.crad.2022.05.032.
[16]
HE M N, LV K, JIANG Y X, et al. Application of superb microvascular imaging in focal liver lesions[J]. World J Gastroenterol, 2017, 23(43): 7765-7775. DOI: 10.3748/wjg.v23.i43.7765.
[17]
HE Z P, JIANG P C, WANG Z H, et al. Application value of superb micro-vascular imaging in evaluating the therapeutic efficacy of hepatic cancer treated by radiofrequency ablation[J]. J Clin Ultrasound Med, 2019, 21(6): 406-409. DOI: 10.16245/j.cnki.issn1008-6978.2019.06.003.
[18]
YAO J D, LI K Y, YANG H, et al. Analysis of Sonazoid contrast-enhanced ultrasound for predicting the risk of microvascular invasion in hepatocellular carcinoma: a prospective multicenter study[J]. Eur Radiol, 2023, 33(10): 7066-7076. DOI: 10.1007/s00330-023-09656-3.
[19]
XIAO Q Y, ZHU W J, TANG H L, et al. Ultrasound radiomics in the prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis[J/OL]. Heliyon, 2023, 9(6): e16997 [2023-10-12]. https://www.ncbi.nim.nih.gov/pmc/articles/PMC10272484. DOI: 10.1016/j.heliyon.2023.e16997.
[20]
LONG Y M, LV Z, WANG S Y, et al. Comparison of preoperative ultrasound and MRI in the diagnosis of microvascular invasion in hepatocellular carcinoma[J/OL]. Funct Integr Genomics, 2023, 23(2): 100 [2023-10-12]. http://link.springer.com/article/10.1007/s10142-023-01006-2. DOI: 10.1007/s10142-023-01006-2.
[21]
MENG X P, WANG Y C, ZHOU J Y, et al. Comparison of MRI and CT for the prediction of microvascular invasion in solitary hepatocellular carcinoma based on a non-radiomics and radiomics method: which imaging modality is better?[J]. J Magn Reson Imaging, 2021, 54(2): 526-536. DOI: 10.1002/jmri.27575.
[22]
YANG C B, ZHANG S, JIA Y J, et al. Dual energy spectral CT imaging for the evaluation of small hepatocellular carcinoma microvascular invasion[J]. Eur J Radiol, 2017, 95: 222-227. DOI: 10.1016/j.ejrad.2017.08.022.
[23]
FENG K P, SUN B. Application of enhanced spectral CT material decomposition technique in preoperative quantitative evaluation of small hepatocellular carcinoma[J]. Chin J CT MRI, 2020, 18(8): 90-92. DOI: 10.3969/j.issn.1672-5131.2020.08.028.
[24]
ZHU Y J, FENG B, CAI W, et al. Prediction of microvascular invasion in solitary AFP-negative hepatocellular carcinoma≤5 cm using a combination of imaging features and quantitative dual-layer spectral-detector CT parameters[J/OL]. Acad Radiol, 2023, 30(Suppl 1): S104-S116 [2023-10-12]. https://www.ncbi.nim.nih.gov/pmc/articles/PMC36958989. DOI: 10.1016/j.acra.2023.02.015.
[25]
ZHANG L, PANG G D, ZHANG J, et al. Perfusion parameters of triphasic computed tomography hold preoperative prediction value for microvascular invasion in hepatocellular carcinoma[J/OL]. Sci Rep, 2023, 13(1): 8629 [2023-10-12]. https://www.ncbi.nim.nih.gov/pmc/articles/PMC10224972. DOI: 10.1038/s41598-023-35913-y.
[26]
SHAO C C, ZHAO F, YU Y F, et al. Value of perfusion parameters and histogram analysis of triphasic computed tomography in pre-operative prediction of histological grade of hepatocellular carcinoma[J]. Chin Med J, 2021, 134(10): 1181-1190. DOI: 10.1097/CM9.0000000000001446.
[27]
ZHAO F, PANG G D, LI X J, et al. Value of perfusion parameters histogram analysis of triphasic CT in differentiating intrahepatic mass forming cholangiocarcinoma from hepatocellular carcinoma[J/OL]. Sci Rep, 2021, 11(1): 23163 [2023-10-12]. https://www.ncbi.nim.nih.gov/pmc/articles/PMC8633216. DOI: 10.1038/s41598-021-02667-4.
[28]
Medical Administration Bureau of the National Health Commission of the People's Republic of China. Standardization for diagnosis and treatment of primary hepatic carcinom(2019 edition)[J]. Chin J Pract Surg, 2020, 40(2): 121-138. DOI: 10.19538/j.cjps.issn1005-2208.2020.02.01.
[29]
FU X H, ZHANG S, WANG B. Predictive value of Gd-EOB-DTPA MR dynamic enhancement on MVI of elderly small hepatocellular carcinoma[J]. Chin J Gerontol, 2023, 43(12): 2859-2862. DOI: 10.3969/j.issn.1005-9202.2023.12.012.
[30]
ZHANG J Y, ZHANG X Q, ZHANG T, et al. The value of predicting early tumor recurrence in HBV-related hepatocellular carcinom based on Gd-EOB-DTPA-enhanced MRI combined with microvascular invasion[J]. J Clin Radiol, 2023, 42(1): 66-71. DOI: 10.13437/j.cnki.jcr.2023.01.027.
[31]
ZHOU M, SHAN D, ZHANG C H, et al. Value of gadoxetic acid-enhanced MRI for microvascular invasion of small hepatocellular carcinoma: a retrospective study[J/OL]. BMC Med Imaging, 2021, 21(1): 40 [2023-10-12]. https://www.ncbi.nim.nih.gov/pmc/articles/PMC7934549. DOI: 10.1186/s12880-021-00572-w.
[32]
YANG H L, HAN P, HUANG M T, et al. The role of gadoxetic acid-enhanced MRI features for predicting microvascular invasion in patients with hepatocellular carcinoma[J]. Abdom Radiol (NY), 2022, 47(3): 948-956. DOI: 10.1007/s00261-021-03392-2.
[33]
MINAMIGUCHI K, IRIZATO M, UCHIYAMA T, et al. Hepatobiliary-phase gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid MRI for pretreatment prediction of efficacy-to-standard-therapies based on Barcelona Clinic Liver Cancer algorithm: an up-to-date review[J]. Eur Radiol, 2023, 33(12): 8764-8775. DOI: 10.1007/s00330-023-09950-0.
[34]
WANG W T, YANG L, YANG Z X, et al. Assessment of microvascular invasion of hepatocellular carcinoma with diffusion kurtosis imaging[J]. Radiology, 2018, 286(2): 571-580. DOI: 10.1148/radiol.2017170515.
[35]
WANG J, LYU S C, ZHOU L, et al. Prognostic analysis of pancreatic carcinoma with portal system invasion following curative resection[J]. Gland Surg, 2021, 10(1): 35-49. DOI: 10.21037/gs-20-495.
[36]
LIM C, SALLOUM C, CHALAYE J, et al. 18F-FDG PET/CT predicts microvascular invasion and early recurrence after liver resection for hepatocellular carcinoma: A prospective observational study[J]. HPB, 2019, 21(6): 739-747. DOI: 10.1016/j.hpb.2018.10.007.
[37]
SABATÉ-LLOBERA A, MESTRES-MARTÍ J, REYNÉS-LLOMPART G, et al. 2-[18F]FDG PET/CT as a predictor of microvascular invasion and high histological grade in patients with hepatocellular carcinoma[J/OL]. Cancers, 2021, 13(11): 2554 [2023-10-15]. https://www.ncbi.nim.nih.gov/pmc/articles/PMC8196959. DOI: 10.3390/cancers13112554.
[38]
HYUN S H, EO J S, SONG B I, et al. Preoperative prediction of microvascular invasion of hepatocellular carcinoma using 18F-FDG PET/CT: a multicenter retrospective cohort study[J]. Eur J Nucl Med Mol Imaging, 2018, 45(5): 720-726. DOI: 10.1007/s00259-017-3880-4.
[39]
JIN H Y, ZHANG M, HU C G. 18-FDG PET/CT provides solid evidence of microvascular invasion and is correlated with prognosis in patients with hepatocellular carcinoma[J/OL]. Asian J Surg, 2021, 44(2): 508 [2023-10-15]. https://doi.org/10.1016/j.asjsur.2020.11.026. DOI: 10.1016/j.asjsur.2020.11.026.
[40]
MORIO K, KAWAOKA T, AIKATA H, et al. Preoperative PET-CT is useful for predicting recurrent extrahepatic metastasis of hepatocellular carcinoma after resection[J/OL]. Eur J Radiol, 2020, 124: 108828 [2023-10-15]. https://doi.org/10.1016/j.ejrad.2020.108828. DOI: 10.1016/j.ejrad.2020.108828.
[41]
KIM K, KIM S J. Diagnostic test accuracies of F-18 FDG PET/CT for prediction of microvascular invasion of hepatocellular carcinoma: A meta-analysis[J]. Clin Imaging, 2021, 79: 251-258. DOI: 10.1016/j.clinimag.2021.06.015.
[42]
QAISER T, TSANG Y W, TANIYAMA D, et al. Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features[J]. Med Image Anal, 2019, 55: 1-14. DOI: 10.1016/j.media.2019.03.014.
[43]
JIANG B, FEI X, FAN X W, et al. A nomogram based on contrast-enhanced ultrasound to predict the microvascular invasion in hepatocellular carcinoma[J]. Ultrasound Med Biol, 2023, 49(7): 1561-1568. DOI: 10.1016/j.ultrasmedbio.2023.02.020.
[44]
XIA T Y, ZHOU Z H, MENG X P, et al. Predicting microvascular invasion in hepatocellular carcinoma using CT-based radiomics model[J/OL]. Radiology, 2023, 307(4): e222729 [2023-10-15]. https://doi.org/10.1148/radiol.222729. DOI: 10.1148/radiol.222729.
[45]
CHEN Y D, XIA Y W, TOLAT P P, et al. Comparison of conventional gadoxetate disodium-enhanced MRI features and radiomics signatures with machine learning for diagnosing microvascular invasion[J]. AJR Am J Roentgenol, 2021, 216(6): 1510-1520. DOI: 10.2214/AJR.20.23255.
[46]
SUN B Y, GU P Y, GUAN R Y, et al. Deep-learning-based analysis of preoperative MRI predicts microvascular invasion and outcome in hepatocellular carcinoma[J/OL]. World J Surg Oncol, 2022, 20(1): 189 [2023-10-15]. https://www.ncbi.nim.nih.gov/pmc/articles/PMC9178852. DOI: 10.1186/s12957-022-02645-8.
[47]
ZENG Q Y, LIU B E, XU Y K, et al. An attention-based deep learning model for predicting microvascular invasion of hepatocellular carcinoma using an intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging[J/OL]. Phys Med Biol, 2021, 66(18) [2023-10-22]. http://iopscience.iop.org/article/10.1088/1361-6560/ac22db. DOI: 10.1088/1361-6560/ac22db.DOI:10.1088/1361-6560/ac22db.
[48]
YANG Y H, ZHOU Y, ZHOU C, et al. Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma[J]. Eur J Surg Oncol, 2022, 48(5): 1068-1077. DOI: 10.1016/j.ejso.2021.11.120.
[49]
CANNELLA R, SANTINHA J, BÈAUFRERE A, et al. Performances and variability of CT radiomics for the prediction of microvascular invasion and survival in patients with HCC: a matter of chance or standardisation?[J]. Eur Radiol, 2023, 33(11): 7618-7628. DOI: 10.1007/s00330-023-09852-1.
[50]
XIAO H, GUO Y, ZHOU Q, et al. Prediction of microvascular invasion in hepatocellular carcinoma with expert-inspiration and skeleton sharing deep learning[J]. Liver Int, 2022, 42(6): 1423-1431. DOI: 10.1111/liv.15254.
[51]
JIANG Y Q, CAO S E, CAO S L, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning[J]. J Cancer Res Clin Oncol, 2021, 147(3): 821-833. DOI: 10.1007/s00432-020-03366-9.
[52]
CHEN Q F, XIAO H, GU Y Q, et al. Deep learning for evaluation of microvascular invasion in hepatocellular carcinoma from tumor areas of histology images[J]. Hepatol Int, 2022, 16(3): 590-602. DOI: 10.1007/s12072-022-10323-w.
[53]
ZHANG Y X, LV X F, QIU J L, et al. Deep learning with 3D convolutional neural network for noninvasive prediction of microvascular invasion in hepatocellular carcinoma[J]. J Magn Reson Imaging, 2021, 54(1): 134-143. DOI: 10.1002/jmri.27538.
[54]
LI X M, QI Z D, DU H Y, et al. Deep convolutional neural network for preoperative prediction of microvascular invasion and clinical outcomes in patients with HCCs[J]. Eur Radiol, 2022, 32(2): 771-782. DOI: 10.1007/s00330-021-08198-w.
[55]
LUO Z W, YU H Y, LIU H X, et al. The value of radiomics models based on hepatobiliary phase images of Gd-EOB-DTPA enhanced MRI in prediction of microvascular invasion classification in hepatocellular carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(4): 95-101, 114. DOI: 10.12015/issn.1674-8034.2023.04.016.

PREV Progress in the application of cardiac magnetic resonance in hypertensive heart disease
NEXT Research progresses of artificial intelligence in imaging of liver fibrosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn