Share:
Share this content in WeChat
X
Review
Application of magnetic resonance fat quantification technique in liver tumors
XIA Juan  LI Liang  YU Chengxin  PAN Junlong  HU Jun 

Cite this article as: XIA J, LI L, YU C X, et al. Application of magnetic resonance fat quantification technique in liver tumors[J]. Chin J Magn Reson Imaging, 2024, 15(2): 224-228. DOI:10.12015/issn.1674-8034.2024.02.037.


[Abstract] Accumulation of fat in body organs increases the risk of cancer in various diseases, including benign liver lesions. In recent years, fatty liver disease has been increasingly recognized as a risk factor for hepatocellular carcinoma, and hepatocellular carcinoma associated with metabolism-associated fatty liver disease has been a growing healthcare burden worldwide. The intratumoral and peritumoral fat content of liver tumors is valuable in the diagnosis, differentiation, grading, and prognosis of liver tumors. Liver transplantation has received increasing attention as one of the therapeutic means for liver tumors, and hepatic steatosis is closely related to preoperative evaluation and postoperative monitoring of liver transplantation. In addition, liver injury caused during tumor treatment is also directly related to liver fat content. Therefore, liver fat quantification is of great significance in developing liver tumors, diagnosis and treatment, and prognosis assessment. In this paper, we review the application of MRI fat quantification techniques, including magnetic resonance spectroscopy (MRS), chemical shift imaging (CSI), and multi-echo Dixon techniques (including IDEAL-IQ and mDixon-Quant) in liver tumors aim to provide more accurate quantitative liver fat imaging marker, to provide an objective and scientific basis for the selection of tumor treatment modalities and the assessment of efficacy, which can be used to help the clinical non-invasive diagnosis and therapeutic evaluation of liver tumors.
[Keywords] liver tumor;fat quantification;magnetic resonance imaging;multiple echo Dixon technique

XIA Juan   LI Liang   YU Chengxin*   PAN Junlong   HU Jun  

Department of Radiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang 443003, China

Corresponding author: YU C X, E-mail: 1542353879@qq.com

Conflicts of interest   None.

Received  2023-11-11
Accepted  2024-02-02
DOI: 10.12015/issn.1674-8034.2024.02.037
Cite this article as: XIA J, LI L, YU C X, et al. Application of magnetic resonance fat quantification technique in liver tumors[J]. Chin J Magn Reson Imaging, 2024, 15(2): 224-228. DOI:10.12015/issn.1674-8034.2024.02.037.

[1]
LLOVET J M, KELLEY R K, VILLANUEVA A, et al. Hepatocellular carcinoma[J/OL]. Nat Rev Dis Primers, 2021, 7(1): 6 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/33479224/. DOI: 10.1038/s41572-020-00240-3.
[2]
YANG J D, HAINAUT P, GORES G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. DOI: 10.1038/s41575-019-0186-y.
[3]
CHERNYAK V, FOWLER K J, KAMAYA A, et al. Liver imaging reporting and data system (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients[J]. Radiology, 2018, 289(3): 816-830. DOI: 10.1148/radiol.2018181494.
[4]
HERMIDA M, PREEL A, ASSENAT E, et al. Small steatotic HCC: a radiological variant associated with improved outcome after ablation[J]. Hepatol Commun, 2021, 5(4): 689-700. DOI: 10.1002/hep4.1661.
[5]
SIRIPONGSAKUN S, LEE J K, RAMAN S S, et al. MRI detection of intratumoral fat in hepatocellular carcinoma: potential biomarker for a more favorable prognosis[J]. AJR Am J Roentgenol, 2012, 199(5): 1018-1025. DOI: 10.2214/AJR.12.8632.
[6]
YONEDA N, MATSUI O, KOBAYASHI S, et al. Current status of imaging biomarkers predicting the biological nature of hepatocellular carcinoma[J]. Jpn J Radiol, 2019, 37(3): 191-208. DOI: 10.1007/s11604-019-00817-3.
[7]
MARTÍN J, SENTÍS M, ZIDAN A, et al. Fatty metamorphosis of hepatocellular carcinoma: detection with chemical shift gradient-echo MR imaging[J]. Radiology, 1995, 195(1): 125-130. DOI: 10.1148/radiology.195.1.7892452.
[8]
NOUGARET S, MONSONIS B, MOLINARI N, et al. Quantification of liver fat content in liver and primary liver lesions using triple-echo-gradient-echo MRI[J]. Eur Radiol, 2020, 30(9): 4752-4761. DOI: 10.1007/s00330-020-06757-1.
[9]
CORRIAS G, ERTA M, SINI M, et al. Comparison of multimaterial decomposition fat fraction with DECT and proton density fat fraction with IDEAL IQ MRI for quantification of liver steatosis in a population exposed to chemotherapy[J/OL]. Dose Response, 2021, 19(2): 1559325820984938 [2023-09-10]. https://pubmed.ncbi.nlm.nih.gov/33958978/. DOI: 10.1177/1559325820984938.
[10]
DONATI F, CIONI D, GUARINO S, et al. Chemotherapy-induced liver injury in patients with colorectal liver metastases: findings from MR imaging[J/OL]. Diagnostics, 2022, 12(4): 867 [2023-09-10]. https://pubmed.ncbi.nlm.nih.gov/35453915/. DOI: 10.3390/diagnostics12040867.
[11]
ZHENG S S, DONG J H, DOU K F, et al. Clinical practice guidelines of liver transplantation for liver cancer in China (2021 edition)[J/OL]. Chin J Transplant Electron Ed, 2021, 15(6): 321-328 [2024-01-24]. https://zhyzzz.cma-cmc.com.cn/CN/10.3877/cma.j.issn.1674-3903.2021.06.001. DOI: 10.3877/cma.j.issn.1674-3903.2021.06.001.
[12]
CHEN G, JIANG J P, WANG X Q, et al. Evaluation of hepatic steatosis before liver transplantation in ex vivo by volumetric quantitative PDFF-MRI[J]. Magn Reson Med, 2021, 85(5): 2805-2814. DOI: 10.1002/mrm.28592.
[13]
TAMAKI N, AJMERA V, LOOMBA R. Non-invasive methods for imaging hepatic steatosis and their clinical importance in NAFLD[J]. Nat Rev Endocrinol, 2022, 18(1): 55-66. DOI: 10.1038/s41574-021-00584-0.
[14]
DAVISON B A, HARRISON S A, COTTER G, et al. Suboptimal reliability of liver biopsy evaluation has implications for randomized clinical trials[J]. J Hepatol, 2020, 73(6): 1322-1332. DOI: 10.1016/j.jhep.2020.06.025.
[15]
HUPFELD S, PISCHEL D, JECHOREK D, et al. MRI-based fat quantification of the liver: is it time for commercially available products?[J/OL]. Eur J Radiol, 2021, 144: 109993 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/34656047/. DOI: 10.1016/j.ejrad.2021.109993.
[16]
REEDER S B, CRUITE I, HAMILTON G, et al. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy[J]. J Magn Reson Imaging, 2011, 34(4): 729-749. DOI: 10.1002/jmri.22775.
[17]
BAWDEN S J, HOAD C, KAYE P, et al. Comparing magnetic resonance liver fat fraction measurements with histology in fibrosis: the difference between proton density fat fraction and tissue mass fat fraction[J]. MAGMA, 2023, 36(4): 553-563. DOI: 10.1007/s10334-022-01052-0.
[18]
HU H H, YOKOO T, BASHIR M R, et al. Linearity and bias of proton density fat fraction as a quantitative imaging biomarker: a multicenter, multiplatform, multivendor phantom study[J]. Radiology, 2021, 298(3): 640-651. DOI: 10.1148/radiol.2021202912.
[19]
MA M Y, WANG J Y, LI X B, et al. Research progress and applications of fat quantification with magnetic resonance imaging[J]. Chin J Magn Reson Imag, 2023, 14(7): 197-202. DOI: 10.12015/issn.1674-8034.2023.07.036.
[20]
AJMERA V, CEPIN S, TESFAI K, et al. A prospective study on the prevalence of NAFLD, advanced fibrosis, cirrhosis and hepatocellular carcinoma in people with type 2 diabetes[J]. J Hepatol, 2023, 78(3): 471-478. DOI: 10.1016/j.jhep.2022.11.010.
[21]
WANG Y S, YE J, CAO Y H, et al. Association of[1H]-MRS quantified liver fat content with glucose metabolism status[J/OL]. Diabetol Metab Syndr, 2020, 12: 51 [2023-09-16]. https://pubmed.ncbi.nlm.nih.gov/32528557/. DOI: 10.1186/s13098-020-00558-8.
[22]
KIM J W, LEE C H, YANG Z P, et al. The spectrum of magnetic resonance imaging proton density fat fraction (MRI-PDFF), magnetic resonance spectroscopy (MRS), and two different histopathologic methods (artificial intelligence vs. pathologist) in quantifying hepatic steatosis[J]. Quant Imaging Med Surg, 2022, 12(11): 5251-5262. DOI: 10.21037/qims-22-393.
[23]
STAREKOVA J, HERNANDO D, PICKHARDT P J, et al. Quantification of liver fat content with CT and MRI: state of the art[J]. Radiology, 2021, 301(2): 250-262. DOI: 10.1148/radiol.2021204288.
[24]
LIAO R K, TANG Z Y, LI X J, et al. Proton magnetic resonance spectroscopy at 3.0T in rabbit with VX2 liver cancer: diagnostic efficacy and correlations with tumor size[J/OL]. Front Oncol, 2022, 12: 846308 [2023-09-16]. https://pubmed.ncbi.nlm.nih.gov/35433458/. DOI: 10.3389/fonc.2022.846308.
[25]
WANG K X, DU G H, QIN X M, et al. 1H-NMR-based metabolomics reveals the biomarker panel and molecular mechanism of hepatocellular carcinoma progression[J]. Anal Bioanal Chem, 2022, 414(4): 1525-1537. DOI: 10.1007/s00216-021-03768-9.
[26]
CASADEI-GARDINI A, DEL COCO L, MARISI G, et al. 1H-NMR based serum metabolomics highlights different specific biomarkers between early and advanced hepatocellular carcinoma stages[J/OL]. Cancers, 2020, 12(1): 241 [2023-09-18]. https://pubmed.ncbi.nlm.nih.gov/31963766/. DOI: 10.3390/cancers12010241.
[27]
TASIC L, AVRAMOVIĆ N, JADRANIN M, et al. High-resolution magic-angle-spinning NMR in revealing hepatoblastoma hallmarks[J/OL]. Biomedicines, 2022, 10(12): 3091 [2023-09-18]. https://pubmed.ncbi.nlm.nih.gov/36551847/. DOI: 10.3390/biomedicines10123091.
[28]
LI C W, KUO Y C, CHEN C Y, et al. Quantification of choline compounds in human hepatic tumors by proton MR spectroscopy at 3 T[J]. Magn Reson Med, 2005, 53(4): 770-776. DOI: 10.1002/mrm.20412.
[29]
BURIAN M, HAJEK M, SEDIVY P, et al. Lipid profile and hepatic fat content measured by 1H MR spectroscopy in patients before and after liver transplantation[J/OL]. Metabolites, 2021, 11(9): 625 [2024-01-07]. https://pubmed.ncbi.nlm.nih.gov/34564441/. DOI: 10.3390/metabo11090625.
[30]
OZTURK K, SOYLU E, YAZICI Z, et al. Differentiation of hepatocellular carcinoma from non-hepatocellular malignant tumours of liver by chemical-shift MRI at 3 T[J]. Clin Radiol, 2019, 74(10): 797-804. DOI: 10.1016/j.crad.2019.06.006.
[31]
KITAGAWA T, KOZAKA K, MATSUBARA T, et al. Fat fraction and R2 * values of various liver masses: initial experience with 6-point Dixon method on a 3T MRI system[J/OL]. Eur J Radiol Open, 2023, 11: 100519 [2024-01-06]. https://pubmed.ncbi.nlm.nih.gov/37609047/. DOI: 10.1016/j.ejro.2023.100519.
[32]
YOKOO T, SHIEHMORTEZA M, HAMILTON G, et al. Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T[J]. Radiology, 2011, 258(3): 749-759. DOI: 10.1148/radiol.10100659.
[33]
TAMAKI N, MUNAGANURU N, JUNG J, et al. Clinical utility of 30% relative decline in MRI-PDFF in predicting fibrosis regression in non-alcoholic fatty liver disease[J]. Gut, 2022, 71(5): 983-990. DOI: 10.1136/gutjnl-2021-324264.
[34]
YE J Z, LIN Y S, SHAO C X, et al. Comparisons of insulin resistance- and steatosis-based scores in monitoring metabolic associated fatty liver disease treatment response[J]. Ann Nutr Metab, 2023, 79(5): 448-459. DOI: 10.1159/000530531.
[35]
AJMERA V, LOOMBA R. Imaging biomarkers of NAFLD, NASH, and fibrosis[J/OL]. Mol Metab, 2021, 50: 101167 [2023-09-23]. https://pubmed.ncbi.nlm.nih.gov/33460786/. DOI: 10.1016/j.molmet.2021.101167.
[36]
JAYAKUMAR S, MIDDLETON M S, LAWITZ E J, et al. Longitudinal correlations between MRE, MRI-PDFF, and liver histology in patients with non-alcoholic steatohepatitis: analysis of data from a phase Ⅱ trial of selonsertib[J]. J Hepatol, 2019, 70(1): 133-141. DOI: 10.1016/j.jhep.2018.09.024.
[37]
PARK S, KWON J H, KIM S Y, et al. Cutoff values for diagnosing hepatic steatosis using contemporary MRI-proton density fat fraction measuring methods[J]. Korean J Radiol, 2022, 23(12): 1260-1268. DOI: 10.3348/kjr.2022.0334.
[38]
KUPCZYK P A, KURT D, ENDLER C, et al. MRI proton density fat fraction for estimation of tumor grade in steatotic hepatocellular carcinoma[J]. Eur Radiol, 2023, 33(12): 8974-8985. DOI: 10.1007/s00330-023-09864-x.
[39]
SHI G Z, CHEN H, ZENG W K, et al. R2* value derived from multi-echo Dixon technique can aid discrimination between benign and malignant focal liver lesions[J]. World J Gastroenterol, 2021, 27(12): 1182-1193. DOI: 10.3748/wjg.v27.i12.1182.
[40]
PARMAR K L, O'REILLY D, VALLE J W, et al. Prospective study of change in liver function and fat in patients with colorectal liver metastases undergoing preoperative chemotherapy: protocol for the CLiFF Study[J/OL]. BMJ Open, 2020, 10(9): e027630 [2023-09-18]. https://pubmed.ncbi.nlm.nih.gov/32967864/. DOI: 10.1136/bmjopen-2018-027630.
[41]
SATAPATHY S K, GONZALEZ H C, VANATTA J, et al. A pilot study of ex-vivo MRI-PDFF of donor livers for assessment of steatosis and predicting early graft dysfunction[J/OL]. PLoS One, 2020, 15(5): e0232006 [2024-01-06]. https://pubmed.ncbi.nlm.nih.gov/32407331/. DOI: 10.1371/journal.pone.0232006.
[42]
QI Q C, WEINSTOCK A K, CHUPETLOVSKA K, et al. Magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF) is a viable alternative to liver biopsy for steatosis quantification in living liver donor transplantation[J/OL]. Clin Transplant, 2021, 35(7): e14339 [2024-01-06]. https://pubmed.ncbi.nlm.nih.gov/33963602/. DOI: 10.1111/ctr.14339.
[43]
SIDDIQUI M S, PARMAR D, SHAIKH F, et al. Saroglitazar improves nonalcoholic fatty liver disease and metabolic health in liver transplant recipients[J]. Liver Transpl, 2023, 29(9): 979-986. DOI: 10.1097/LVT.0000000000000110.
[44]
PASANTA D, HTUN K T, PAN J, et al. Magnetic resonance spectroscopy of hepatic fat from fundamental to clinical applications[J/OL]. Diagnostics, 2021, 11(5): 842 [2023-09-19]. https://pubmed.ncbi.nlm.nih.gov/34067193/. DOI: 10.3390/diagnostics11050842.
[45]
ZHANG Q H, ZHAO Y, TIAN S F, et al. Hepatic fat quantification of magnetic resonance imaging whole-liver segmentation for assessing the severity of nonalcoholic fatty liver disease: comparison with a region of interest sampling method[J]. Quant Imaging Med Surg, 2021, 11(7): 2933-2942. DOI: 10.21037/qims-20-989.
[46]
JIANG Y L, ZOU J, FAN F X, et al. Application of multi-echo Dixon and MRS in quantifying hepatic fat content and staging liver fibrosis[J/OL]. Sci Rep, 2023, 13(1): 12555 [2023-09-18]. https://pubmed.ncbi.nlm.nih.gov/37532757/. DOI: 10.1038/s41598-023-39361-6.
[47]
YANG Y, XU K H, CHEN X F, et al. The accuracy and clinical relevance of the multi-echo Dixon technique for evaluating changes to hepatic steatosis in patients with non-alcoholic fatty liver disease treated with formulated food[J]. Magn Reson Med Sci, 2023, 22(2): 263-271. DOI: 10.2463/mrms.mp.2021-0168.
[48]
UUTELA A, OVISSI A, HAKKARAINEN A, et al. Treatment response of colorectal cancer liver metastases to neoadjuvant or conversion therapy: a prospective multicentre follow-up study using MRI, diffusion-weighted imaging and 1H-MR spectroscopy compared with histology (subgroup in the RAXO trial)[J/OL]. ESMO Open, 2021, 6(4): 100208 [2024-01-03]. https://pubmed.ncbi.nlm.nih.gov/34325107/. DOI: 10.1016/j.esmoop.2021.100208.
[49]
LEE S W, HUANG D Q, BETTENCOURT R, et al. Low liver fat in non-alcoholic steatohepatitis-related significant fibrosis and cirrhosis is associated with hepatocellular carcinoma, decompensation and mortality[J]. Aliment Pharmacol Ther, 2024, 59(1): 80-88. DOI: 10.1111/apt.17783.
[50]
HUI R W, CHAN A C, LO G, et al. Magnetic resonance elastography and proton density fat fraction predict adverse outcomes in hepatocellular carcinoma[J]. Hepatol Int, 2022, 16(2): 371-380. DOI: 10.1007/s12072-022-10305-y.
[51]
WANG Q, YE F, MA P Q, et al. Quantified MRI and 25OH-VitD3 can be used as effective biomarkers for patients with neoadjuvant chemotherapy-induced liver injury in CRCLM?[J/OL]. BMC Cancer, 2020, 20(1): 767 [2024-01-04]. https://pubmed.ncbi.nlm.nih.gov/32799832/. DOI: 10.1186/s12885-020-07282-6.

PREV Research progresses of artificial intelligence in imaging of liver fibrosis
NEXT Research progress in multimodal function magnetic resonance imaging in staging and grading of bladder cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn