Share:
Share this content in WeChat
X
Review
Research progress in multimodal function magnetic resonance imaging in staging and grading of bladder cancer
GUO Junting  WANG Xiaochun 

Cite this article as: GUO J T, WANG X C. Research progress in multimodal function magnetic resonance imaging in staging and grading of bladder cancer[J]. Chin J Magn Reson Imaging, 2024, 15(2): 229-234. DOI:10.12015/issn.1674-8034.2024.02.038.


[Abstract] Bladder cancer (BC) is a kind of tumor with high recurrence rate and easy progression. The treatment burden ranks first among all cancers, which seriously endangers national health. Accurate staging and grading are of great significance for the diagnosis and treatment decisions. With the recent advancements in MRI technology and Vesical Imaging-Reporting and Data System, diffusion weighted imaging, dynamic contrast enhanced MRI, diffusion kurtosis imaging, intravoxel incoherent motion, fractional-order calculus diffusion model, synthetic MRI as well as chemical exchange saturation transfer imaging can noninvasively evaluate tumor quality in terms of diffusion, blood supply, tissue quantitative analysis and metabolism. It is expected that assess tumor biological characteristics preoperatively and predict tumor recurrence. Its clinical value lies in helping clinicians make early diagnosis, formulating optimal surgical methods, improving patients' quality of life and reducing unnecessary economic burden. At the same time, the above technology become a research hotspot gradually in the future. This review focuses on the application of multimodal function MRI in the staging and grading of BC both domestically and internationally in recent years, providing a more reliable imaging basis for clinical diagnosis and treatment.
[Keywords] bladder cancer;magnetic resonance imaging;multimodal;diffusion weighted imaging;staging;grading

GUO Junting1   WANG Xiaochun2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China

Corresponding author: WANG X C, E-mail: 2010xiaochun@163.com

Conflicts of interest   None.

Received  2023-10-07
Accepted  2024-01-15
DOI: 10.12015/issn.1674-8034.2024.02.038
Cite this article as: GUO J T, WANG X C. Research progress in multimodal function magnetic resonance imaging in staging and grading of bladder cancer[J]. Chin J Magn Reson Imaging, 2024, 15(2): 229-234. DOI:10.12015/issn.1674-8034.2024.02.038.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
CHIN F W, HUSSIN H, CHAU D M, et al. Differential protein expression patterns of HOXA13 and HOXB13 are associated with bladder cancer progression[J/OL]. Diagnostics, 2023, 13(16): 2636 [2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/37627895/. DOI: 10.3390/diagnostics13162636.
[3]
WITJES J A, BRUINS H M, CATHOMAS R, et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines[J]. Eur Urol, 2021, 79(1): 82-104. DOI: 10.1016/j.eururo.2020.03.055.
[4]
BABJUK M, BURGER M, COMPÉRAT E M, et al. European association of urology guidelines on non-muscle-invasive bladder cancer (TaT1 and carcinoma in situ) - 2019 update[J]. Eur Urol, 2019, 76(5): 639-657. DOI: 10.1016/j.eururo.2019.08.016.
[5]
FLAIG T W, SPIESS P E, ABERN M, et al. NCCN guidelines® insights: bladder cancer, version 2.2022[J]. J Natl Compr Canc Netw, 2022, 20(8): 866-878. DOI: 10.6004/jnccn.2022.0041.
[6]
CUMBERBATCH M G K, FOERSTER B, CATTO J W F, et al. Repeat transurethral resection in non-muscle-invasive bladder cancer: a systematic review[J]. Eur Urol, 2018, 73(6): 925-933. DOI: 10.1016/j.eururo.2018.02.014.
[7]
MIRMOMEN S M, SHINAGARE A B, WILLIAMS K E, et al. Preoperative imaging for locoregional staging of bladder cancer[J]. Abdom Radiol, 2019, 44(12): 3843-3857. DOI: 10.1007/s00261-019-02168-z.
[8]
GHANSHYAM K, NACHIKET V, GOVIND S, et al. Validation of Vesical Imaging Reporting and Data System score for the diagnosis of muscle-invasive bladder cancer: a prospective cross-sectional study[J]. Asian J Urol, 2022, 9(4): 467-472. DOI: 10.1016/j.ajur.2021.06.001.
[9]
ISLAM N U, JEHANGIR M, PARRY A H, et al. Diagnostic performance of multiparametric MRI based Vesical Imaging-Reporting and Data System (VI-RADS) scoring in discriminating between non-muscle invasive and muscle invasive bladder cancer[J/OL]. Pol J Radiol, 2023, 88: e356-e364 [2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/37701172/. DOI: 10.5114/pjr.2023.130807.
[10]
ARITA Y, SHIGETA K, AKITA H, et al. Clinical utility of the Vesical Imaging-Reporting and Data System for muscle-invasive bladder cancer between radiologists and urologists based on multiparametric MRI including 3D FSE T2-weighted acquisitions[J]. Eur Radiol, 2021, 31(2): 875-883. DOI: 10.1007/s00330-020-07153-5.
[11]
BARCHETTI G, SIMONE G, CERAVOLO I, et al. Multiparametric MRI of the bladder: inter-observer agreement and accuracy with the Vesical Imaging-Reporting and Data System (VI-RADS) at a single reference center[J]. Eur Radiol, 2019, 29(10): 5498-5506. DOI: 10.1007/s00330-019-06117-8.
[12]
WANG Z Y, SHANG Y Y, LUAN T, et al. Evaluation of the value of the VI-RADS scoring system in assessing muscle infiltration by bladder cancer[J/OL]. Cancer Imaging, 2020, 20(1): 26 [2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/32252816/. DOI: 10.1186/s40644-020-00304-3.
[13]
AKCAY A, YAGCI A B, CELEN S, et al. VI-RADS score and tumor contact length in MRI: a potential method for the detection of muscle invasion in bladder cancer[J]. Clin Imaging, 2021, 77: 25-36. DOI: 10.1016/j.clinimag.2021.02.026.
[14]
WOO S, PANEBIANCO V, NARUMI Y, et al. Diagnostic performance of vesical imaging reporting and data system for the prediction of muscle-invasive bladder cancer: a systematic review and meta-analysis[J]. Eur Urol Oncol, 2020, 3(3): 306-315. DOI: 10.1016/j.euo.2020.02.007.
[15]
PANEBIANCO V, PECORARO M, DEL GIUDICE F, et al. VI-RADS for bladder cancer: current applications and future developments[J]. J Magn Reson Imaging, 2022, 55(1): 23-36. DOI: 10.1002/jmri.27361.
[16]
WANG H J, LUO C, ZHANG F, et al. Multiparametric MRI for bladder cancer: validation of VI-RADS for the detection of detrusor muscle invasion[J]. Radiology, 2019, 291(3): 668-674. DOI: 10.1148/radiol.2019182506.
[17]
CAI Q, LING J, KONG L M, et al. Multiparametric MRI evaluation of VI-RADS for bladder tumors located at the ureteral orifice[J]. Radiology, 2022, 304(3): 593-599. DOI: 10.1148/radiol.220028.
[18]
TANG L, ZHOU X J. Diffusion MRI of cancer: from low to high b-values[J]. J Magn Reson Imaging, 2019, 49(1): 23-40. DOI: 10.1002/jmri.26293.
[19]
LI S C, LIANG P, WANG Y C, et al. Combining volumetric apparent diffusion coefficient histogram analysis with vesical imaging reporting and data system to predict the muscle invasion of bladder cancer[J]. Abdom Radiol, 2021, 46(9): 4301-4310. DOI: 10.1007/s00261-021-03091-y.
[20]
LIU W, CHEN R C, LIU X H, et al. Differentiation of bladder cancer stages using the vesical imaging-reporting and data system and apparent diffusion coefficient[J]. Quant Imaging Med Surg, 2023, 13(8): 4897-4907. DOI: 10.21037/qims-22-1184.
[21]
ZHANG W, ZHANG Z C, XIAO W X, et al. Multiple directional DWI combined with T2WI in predicting muscle layer and Ki-67 correlation in bladder cancer in 3.0-T MRI[J]. Cancer Med, 2023, 12(9): 10462-10472. DOI: 10.1002/cam4.5782.
[22]
CHEN H H, CHEN L G, LIU F, et al. Diffusion-weighted magnetic resonance imaging in bladder cancer: comparison of readout-segmented and single-shot EPI techniques[J/OL]. Cancer Imaging, 2019, 19(1): 59 [2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/31455403/. DOI: 10.1186/s40644-019-0245-1.
[23]
LIN W C, CHEN J H. Pitfalls and limitations of diffusion-weighted magnetic resonance imaging in the diagnosis of urinary bladder cancer[J]. Transl Oncol, 2015, 8(3): 217-230. DOI: 10.1016/j.tranon.2015.04.003.
[24]
LI Q, CAO B H, LIU K, et al. Detecting the muscle invasiveness of bladder cancer: an application of diffusion kurtosis imaging and tumor contact length[J/OL]. Eur J Radiol, 2022, 151: 110329 [2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/35487092/. DOI: 10.1016/j.ejrad.2022.110329.
[25]
LI Q, CAO B H, TAN Q X, et al. Prediction of muscle invasion of bladder cancer: a comparison between DKI and conventional DWI[J/OL]. Eur J Radiol, 2021, 136: 109522 [2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/33434860/. DOI: 10.1016/j.ejrad.2021.109522.
[26]
WANG F, CHEN H G, ZHANG R Y, et al. Diffusion kurtosis imaging to assess correlations with clinicopathologic factors for bladder cancer: a comparison between the multi-b value method and the tensor method[J]. Eur Radiol, 2019, 29(8): 4447-4455. DOI: 10.1007/s00330-018-5977-y.
[27]
LI J T, LI W J, NIU J L, et al. Intravoxel incoherent motion diffusion-weighted MRI of infiltrated marrow for predicting overall survival in newly diagnosed acute myeloid leukemia[J]. Radiology, 2020, 295(1): 155-161. DOI: 10.1148/radiol.2020191693.
[28]
ZHU M L, ZHANG C D, YAN J X, et al. Accuracy of quantitative diffusion-weighted imaging for differentiating benign and malignant pancreatic lesions: a systematic review and meta-analysis[J]. Eur Radiol, 2021, 31(10): 7746-7759. DOI: 10.1007/s00330-021-07880-3.
[29]
BERGAMINO M, BURKE A, BAXTER L C, et al. Longitudinal assessment of intravoxel incoherent motion diffusion-weighted MRI metrics in cognitive decline[J]. J Magn Reson Imaging, 2022, 56(6): 1845-1862. DOI: 10.1002/jmri.28172.
[30]
WANG F, WU L M, HUA X L, et al. Intravoxel incoherent motion diffusion-weighted imaging in assessing bladder cancer invasiveness and cell proliferation[J]. J Magn Reson Imaging, 2018, 47(4): 1054-1060. DOI: 10.1002/jmri.25839.
[31]
ZHANG M M, CHEN Y, CONG X Y, et al. Utility of intravoxel incoherent motion MRI derived parameters for prediction of aggressiveness in urothelial bladder carcinoma[J]. J Magn Reson Imaging, 2018, 48(6): 1648-1656. DOI: 10.1002/jmri.26165.
[32]
SHENG R F, ZHANG Y F, SUN W, et al. Staging chronic hepatitis B related liver fibrosis with a fractional order Calculus diffusion model[J]. Acad Radiol, 2022, 29(7): 951-963. DOI: 10.1016/j.acra.2021.07.005.
[33]
WEN Q Q, TONG H Y, YANG H Y. Impacts of diffusion time on DWI parameters of stretched-exponential model and fractional order calculus model in mice brains in vitro[J]. Chin J Med Imag Technol, 2018, 34(12): 1761-1766. DOI: 10.13929/j.1003-3289.201804068.
[34]
FENG C, WANG Y C, DAN G Y, et al. Evaluation of a fractional-order calculus diffusion model and bi-parametric VI-RADS for staging and grading bladder urothelial carcinoma[J]. Eur Radiol, 2022, 32(2): 890-900. DOI: 10.1007/s00330-021-08203-2.
[35]
AHMAD HASSANIEN O, ABOUELKHEIR R T, ABOU EL-GHAR M I, et al. Dynamic contrast-enhanced magnetic resonance imaging as a diagnostic tool in the assessment of tumour angiogenesis in urinary bladder cancer[J]. Can Assoc Radiol J, 2019, 70(3): 254-263. DOI: 10.1016/j.carj.2018.11.004.
[36]
ZHOU G X, CHEN X, ZHANG J H, et al. Contrast-enhanced dynamic and diffusion-weighted MR imaging at 3.0T to assess aggressiveness of bladder cancer[J]. Eur J Radiol, 2014, 83(11): 2013-2018. DOI: 10.1016/j.ejrad.2014.08.012.
[37]
TYAGI P, MOON C H, CONNELL M, et al. Intravesical contrast-enhanced MRI: a potential tool for bladder cancer surveillance and staging[J]. Curr Oncol, 2023, 30(5): 4632-4647. DOI: 10.3390/curroncol30050350.
[38]
WANG Y C, SHEN Y Q, HU X M, et al. Application of R2* and apparent diffusion coefficient in estimating tumor grade and T category of bladder cancer[J]. AJR Am J Roentgenol, 2020, 214(2): 383-389. DOI: 10.2214/AJR.19.21668.
[39]
WANG Y C, HU D Y, YU H, et al. Comparison of the diagnostic value of monoexponential, biexponential, and stretched exponential diffusion-weighted MRI in differentiating tumor stage and histological grade of bladder cancer[J]. Acad Radiol, 2019, 26(2): 239-246. DOI: 10.1016/j.acra.2018.04.016.
[40]
KARAMAN M M, TANG L, LI Z Y, et al. In vivo assessment of Lauren classification for gastric adenocarcinoma using diffusion MRI with a fractional order calculus model[J]. Eur Radiol, 2021, 31(8): 5659-5668. DOI: 10.1007/s00330-021-07694-3.
[41]
CHEN W, ZHU L N, DAI Y M, et al. Differentiation of salivary gland tumor using diffusion-weighted imaging with a fractional order calculus model[J/OL]. Br J Radiol, 2020, 93(1113): 20200052 [2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/32649236/. DOI: 10.1259/bjr.20200052.
[42]
HAGIWARA A, FUJIMOTO K, KAMAGATA K, et al. Age-related changes in relaxation times, proton density, myelin, and tissue volumes in adult brain analyzed by 2-dimensional quantitative synthetic magnetic resonance imaging[J]. Invest Radiol, 2021, 56(3): 163-172. DOI: 10.1097/RLI.0000000000000720.
[43]
KONAR A S, SHAH A D, PAUDYAL R, et al. Quantitative synthetic magnetic resonance imaging for brain metastases: a feasibility study[J/OL]. Cancers, 2022, 14(11): 2651 [2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/35681631/. DOI: 10.3390/cancers14112651.
[44]
CUI Y D, HAN S Y, LIU M, et al. Diagnosis and grading of prostate cancer by relaxation maps from synthetic MRI[J]. J Magn Reson Imaging, 2020, 52(2): 552-564. DOI: 10.1002/jmri.27075.
[45]
CAI Q, WEN Z H, HUANG Y P, et al. Investigation of synthetic magnetic resonance imaging applied in the evaluation of the tumor grade of bladder cancer[J]. J Magn Reson Imaging, 2021, 54(6): 1989-1997. DOI: 10.1002/jmri.27770.
[46]
LIU W G, WANG X, XIE S M, et al. Amide proton transfer (APT) and magnetization transfer (MT) in predicting short-term therapeutic outcome in nasopharyngeal carcinoma after chemoradiotherapy: a feasibility study of three-dimensional chemical exchange saturation transfer (CEST) MRI[J/OL]. Cancer Imaging, 2023, 23(1): 80 [2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/37658446/. DOI: 10.1186/s40644-023-00602-6.
[47]
WHYARD T, WALTZER W C, WALTZER D, et al. Metabolic alterations in bladder cancer: applications for cancer imaging[J]. Exp Cell Res, 2016, 341(1): 77-83. DOI: 10.1016/j.yexcr.2016.01.005.
[48]
MILOT L. Amide proton transfer-weighted MRI: insight into cancer cell biology[J]. Radiology, 2022, 305(1): 135-136. DOI: 10.1148/radiol.221376.
[49]
WANG H J, CAI Q, HUANG Y P, et al. Amide proton transfer-weighted MRI in predicting histologic grade of bladder cancer[J]. Radiology, 2022, 305(1): 305(1): 127-134. DOI: 10.1148/radiol.211804.
[50]
WU B L, JIA F, LI X K, et al. Comparative study of amide proton transfer imaging and intravoxel incoherent motion imaging for predicting histologic grade of hepatocellular carcinoma[J/OL]. Front Oncol, 2020, 10: 562049 [2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/33194630/. DOI: 10.3389/fonc.2020.562049.
[51]
MENG N, WANG X J, SUN J, et al. A comparative study of the value of amide proton transfer-weighted imaging and diffusion kurtosis imaging in the diagnosis and evaluation of breast cancer[J]. Eur Radiol, 2021, 31(3): 1707-1717. DOI: 10.1007/s00330-020-07169-x.

PREV Application of magnetic resonance fat quantification technique in liver tumors
NEXT 4D Flow cardiovascular magnetic resonance consensus statement of SCMR: 2023 update
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn