Share:
Share this content in WeChat
X
Clinlcal Guidelines & Expert Consensu
4D Flow cardiovascular magnetic resonance consensus statement of SCMR: 2023 update
JIA Xi  ZHAO Shihua 

Cite this article as: JIA X, ZHAO S H. 4D Flow cardiovascular magnetic resonance consensus statement of SCMR: 2023 update[J]. Chin J Magn Reson Imaging, 2024, 15(3): 1-6. DOI:10.12015/issn.1674-8034.2024.03.001.


[Abstract] Hemodialysis evaluation is important for the diagnosis and treatment of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) can comprehensively and accurately evaluate blood flow. The Society for Cardiovascular Magnetic Resonance (SCMR) issued a new consensus statement in 2023 based on the 2015 4D Flow CMR consensus statement. The consensus includes recommendations provided for 4D Flow CMR acquisition parameter selection, post-processing workflow, integration into clinical practice, publication standards checklist, and definition of minimum quality assurance and validation criteria for clinical centers, as well as the current limitations and future. The author interpreted and analyzed the new version of the consensus statement, aiming to provide reference for the wide clinical application of 4D Flow CMR and the research direction of this field in the future.
[Keywords] four-dimensional cardiovascular magnetic resonance flow imaging;cardiovascular disease;clinical practice;scientific research;consensus statement;magnetic resonance imaging

JIA Xi   ZHAO Shihua*  

Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China

Corresponding author: ZHAO S H, E-mail: cjrzhaoshihua2009@163.com

Conflicts of interest   None.

Received  2023-11-01
Accepted  2024-02-23
DOI: 10.12015/issn.1674-8034.2024.03.001
Cite this article as: JIA X, ZHAO S H. 4D Flow cardiovascular magnetic resonance consensus statement of SCMR: 2023 update[J]. Chin J Magn Reson Imaging, 2024, 15(3): 1-6. DOI:10.12015/issn.1674-8034.2024.03.001.

[1]
BISSELL M M, RAIMONDI F, AIT ALI L, et al. 4D Flow cardiovascular magnetic resonance consensus statement: 2023 update[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 40 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/37474977/. DOI: 10.1186/s12968-023-00942-z.
[2]
DYVERFELDT P, BISSELL M, BARKER A J, et al. 4D flow cardiovascular magnetic resonance consensus statement[J/OL]. J Cardiovasc Magn Reson, 2015, 17(1): 72 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/26257141/. DOI: 10.1186/s12968-015-0174-5.
[3]
VALVERDE I, NORDMEYER S, URIBE S, et al. Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition[J/OL]. J Cardiovasc Magn Reson, 2012, 14(1): 25 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/22541134/. DOI: 10.1186/1532-429X-14-25.
[4]
FRATZ S, CHUNG T, GREIL G F, et al. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease[J/OL]. J Cardiovasc Magn Reson, 2013, 15(1): 51 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/23763839/. DOI: 10.1186/1532-429X-15-51.
[5]
CALLAGHAN F M, KOZOR R, SHERRAH A G, et al. Use of multi-velocity encoding 4D flow MRI to improve quantification of flow patterns in the aorta[J]. J Magn Reson Imaging, 2016, 43(2): 352-363. DOI: 10.1002/jmri.24991.
[6]
MOERSDORF R, TREUTLEIN M, KROEGER J R, et al. Precision, reproducibility and applicability of an undersampled multi-venc 4D flow MRI sequence for the assessment of cardiac hemodynamics[J/OL]. Magn Reson Imaging, 2019, 61: 73-82 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/31100318/. DOI: 10.1016/j.mri.2019.05.015.
[7]
NAKAZA M, MATSUMOTO M, SEKINE T, et al. Dual-VENC 4D flow MRI can detect abnormal blood flow in the left atrium that potentially causes thrombosis formation after left upper lobectomy[J]. Magn Reson Med Sci, 2022, 21(3): 433-443. DOI: 10.2463/mrms.mp.2020-0170.
[8]
HESS A T, BISSELL M M, NTUSI N A, et al. Aortic 4D flow: quantification of signal-to-noise ratio as a function of field strength and contrast enhancement for 1.5T, 3T, and 7T[J]. Magn Reson Med, 2015, 73(5): 1864-1871. DOI: 10.1002/mrm.25317.
[9]
VASANAWALA S S, NGUYEN K L, HOPE M D, et al. Safety and technique of ferumoxytol administration for MRI[J]. Magn Reson Med, 2016, 75(5): 2107-2111. DOI: 10.1002/mrm.26151.
[10]
TERADA M, TAKEHARA Y, ISODA H, et al. Technical background for 4D flow MR imaging[J]. Magn Reson Med Sci, 2022, 21(2): 267-277. DOI: 10.2463/mrms.rev.2021-0104.
[11]
CHERNOBELSKY A, SHUBAYEV O, COMEAU C R, et al. Baseline correction of phase contrast images improves quantification of blood flow in the great vessels[J]. J Cardiovasc Magn Reson, 2007, 9(4): 681-685. DOI: 10.1080/10976640601187588.
[12]
MINDERHOUD S C S, VAN DER VELDE N, WENTZEL J J, et al. The clinical impact of phase offset errors and different correction methods in cardiovascular magnetic resonance phase contrast imaging: a multi-scanner study[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 68 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/32938483/. DOI: 10.1186/s12968-020-00659-3.
[13]
OECHTERING T H, NOWAK A, SIEREN M M, et al. Repeatability and reproducibility of various 4D Flow MRI postprocessing software programs in a multi-software and multi-vendor cross-over comparison study[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 22 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/36978131/. DOI: 10.1186/s12968-023-00921-4.
[14]
CASCIARO M E, PASCANER A F, GUILENEA F N, et al. 4D flow MRI: impact of region of interest size, angulation and spatial resolution on aortic flow assessment[J/OL]. Physiol Meas, 2021, 42(3) [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/33567412/. DOI: 10.1088/1361-6579/abe525.
[15]
HSIAO A, LUSTIG M, ALLEY M T, et al. Evaluation of valvular insufficiency and shunts with parallel-imaging compressed-sensing 4D phase-contrast MR imaging with stereoscopic 3D velocity-fusion volume-rendered visualization[J]. Radiology, 2012, 265(1): 87-95. DOI: 10.1148/radiol.12120055.
[16]
HSIAO A, LUSTIG M, ALLEY M T, et al. Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase-contrast MRI[J/OL]. AJR Am J Roentgenol, 2012, 198(3): W250-W259 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/22358022/. DOI: 10.2214/AJR.11.6969.
[17]
FIDOCK B, ARCHER G, BARKER N, et al. Standard and emerging CMR methods for mitral regurgitation quantification[J/OL]. Int J Cardiol, 2021, 331: 316-321 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/33548381/. DOI: 10.1016/j.ijcard.2021.01.066.
[18]
SPAMPINATO R A, JAHNKE C, CRELIER G, et al. Quantification of regurgitation in mitral valve prolapse with four-dimensional flow cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 87 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/34233708/. DOI: 10.1186/s12968-021-00783-8.
[19]
MILLS M T, GRAFTON-CLARKE C, WILLIAMS G, et al. Feasibility and validation of trans-valvular flow derived by four-dimensional flow cardiovascular magnetic resonance imaging in patients with atrial fibrillation[J/OL]. Wellcome Open Res, 2021, 6: 73 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/34095509/. DOI: 10.12688/wellcomeopenres.16655.2.
[20]
BRIX L, RINGGAARD S, RASMUSSON A, et al. Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions[J/OL]. J Cardiovasc Magn Reson, 2009, 11(1): 3 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/19232119/. DOI: 10.1186/1532-429X-11-3.
[21]
NORDMEYER S, RIESENKAMPFF E, MESSROGHLI D, et al. Four-dimensional velocity-encoded magnetic resonance imaging improves blood flow quantification in patients with complex accelerated flow[J]. J Magn Reson Imaging, 2013, 37(1): 208-216. DOI: 10.1002/jmri.23793.
[22]
URIBE S, BEERBAUM P, SØRENSEN T S, et al. Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating[J]. Magn Reson Med, 2009, 62(4): 984-992. DOI: 10.1002/mrm.22090.
[23]
HA H, KVITTING J P, DYVERFELDT P, et al. Validation of pressure drop assessment using 4D flow MRI-based turbulence production in various shapes of aortic stenoses[J]. Magn Reson Med, 2019, 81(2): 893-906. DOI: 10.1002/mrm.27437.
[24]
PUISEUX T, SEWONU A, MORENO R, et al. Numerical simulation of time-resolved 3D phase-contrast magnetic resonance imaging[J/OL]. PLoS One, 2021, 16(3): e0248816 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/33770130/. DOI: 10.1371/journal.pone.0248816.
[25]
DIRIX P, BUOSO S, PEPER E S, et al. Synthesis of patient-specific multipoint 4D flow MRI data of turbulent aortic flow downstream of stenotic valves[J/OL]. Sci Rep, 2022, 12(1): 16004 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/36163357/. DOI: 10.1038/s41598-022-20121-x.
[26]
NETT E J, JOHNSON K M, FRYDRYCHOWICZ A, et al. Four-dimensional phase contrast MRI with accelerated dual velocity encoding[J]. J Magn Reson Imaging, 2012, 35(6): 1462-1471. DOI: 10.1002/jmri.23588.
[27]
SCHNELL S, ANSARI S A, WU C, et al. Accelerated dual-venc 4D flow MRI for neurovascular applications[J]. J Magn Reson Imaging, 2017, 46(1): 102-114. DOI: 10.1002/jmri.25595.

PREV Research progress in multimodal function magnetic resonance imaging in staging and grading of bladder cancer
NEXT Alterations of brain mirror homotopic functional connectivity in postpartum women: A resting-state fMRI study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn