Share:
Share this content in WeChat
X
Clinical Article
Study of lateralization changes in the basal ganglia stroke patients based on functional connectivity analysis
MAO Qianqian  CHEN Yuchen  CHEN Huiyou  JIANG Liang  JIANG Hailong  YIN Xindao 

Cite this article as: MAO Q Q, CHEN Y C, CHEN H Y, et al. Study of lateralization changes in the basal ganglia stroke patients based on functional connectivity analysis[J]. Chin J Magn Reson Imaging, 2024, 15(3): 13-18. DOI:10.12015/issn.1674-8034.2024.03.003.


[Abstract] Objective To explore the altered static and dynamic functional connectivity of the brain in patients with left-sided basal ganglia stroke (L-BGS) versus right-sided basal ganglia stroke (R-BGS) and to further explore the mechanisms of stroke lateralisation.Materials and Methods Twenty-three L-BGS patients, 18 R-BGS patients and 20 healthy controls (HCs) were analysed, and resting-state functional MRI (rs-fMRI) was performed on each of the three groups of subjects. Based on rs-fMRI and sliding window techniques, static functional connectivity analysis and dynamic functional connectivity analysis were performed on the two groups of patients and HCs, respectively.Results In static brain network connectivity analysis, L-BGS patients had more extensive increased and decreased intra-network connectivity compared to HCs (P<0.001, cluster level FWE correction); R-BGS patients had more extensive impaired inter-network connectivity compared to HCs (P<0.016 7, FDR correction). In dynamic connectivity analyses, L-BGS showed more positive reorganisation of network connectivity compared to HCs (P<0.05, FDR corrected).Conclusions The present study confirms that within 1 month of basal ganglia stroke onset, L-BGS patients show more positive compensatory changes in static and dynamic brain network connectivity.
[Keywords] basal ganglia stroke;resting-state functional magnetic resonance imaging;magnetic resonance imaging;dynamic functional network connectivity;lateralization

MAO Qianqian   CHEN Yuchen   CHEN Huiyou   JIANG Liang   JIANG Hailong   YIN Xindao*  

Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China

Corresponding author: YIN X D, E-mail: y.163yy@163.com

Conflicts of interest   None.

Received  2023-08-28
Accepted  2024-02-02
DOI: 10.12015/issn.1674-8034.2024.03.003
Cite this article as: MAO Q Q, CHEN Y C, CHEN H Y, et al. Study of lateralization changes in the basal ganglia stroke patients based on functional connectivity analysis[J]. Chin J Magn Reson Imaging, 2024, 15(3): 13-18. DOI:10.12015/issn.1674-8034.2024.03.003.

[1]
WANG Y J, LI Z X, GU H Q, et al. China Stroke Statistics Writing Committee. China Stroke Statistics: an update on the 2019 report from the National Center for Healthcare Quality Management in Neurological Diseases, China National Clinical Research Center for Neurological Diseases, the Chinese Stroke Association, National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention and Institute for Global Neuroscience and Stroke Collaborations[J]. Stroke Vasc Neurol, 2022, 7(5): 415-450. DOI: 10.1136/svn-2021-001374.
[2]
XU J, ZHANG X, JIN A, et al. Trends and risk factors associated with stroke recurrence in China, 2007-2018[J/OL]. JAMA Netw Open, 2022, 5(6): e2216341 [2023-08-28]. https://pubmed.ncbi.nlm.nih.gov/35704318/. DOI: 10.1001/jamanetworkopen.2022.16341.
[3]
YAO G, LI J, LIU S, et al. Alterations of functional connectivity in stroke patients with basal ganglia damage and cognitive impairment[J/OL]. Front Neurol, 2020, 11: 980 [2023-08-28]. https://pubmed.ncbi.nlm.nih.gov/33013648/. DOI: 10.3389/fneur.2020.00980.
[4]
NADEAU S E. Basal ganglia and thalamic contributions to language function: Insights from a parallel distributed processing perspective[J]. Neuropsychol Rev, 2021, 31(3): 495-515. DOI: 10.1007/s11065-020-09466-0.
[5]
ROUNIS E, BINKOFSKI F. Limb Apraxias: The influence of higher order perceptual and semantic deficits in motor recovery after stroke[J]. Stroke, 2023, 54(1): 30-43. DOI: 10.1161/STROKEAHA.122.037948.
[6]
LIU S, YU H, WANG Z, et al. Correlation analysis of balance function with plantar pressure distribution and gait parameters in patients with cerebral infarction in the basal ganglia region[J/OL]. Front Neurosci, 2023, 17: 1099843 [2023-08-28]. https://pubmed.ncbi.nlm.nih.gov/36908774/. DOI: 10.3389/fnins.2023.1099843.
[7]
ZUO L, DONG Y, HU Y, et al. Clinical features, brain-structure changes, and cognitive impairment in basal ganglia infarcts: A pilot study[J]. Neuropsychiatr Dis Treat, 2023, 19: 1171-1180. DOI: 10.2147/NDT.S384726.
[8]
WEAVER N A, KUIJF H J, ABEN H P, et al. Strategic infarct locations for post-stroke cognitive impairment: a pooled analysis of individual patient data from 12 acute ischaemic stroke cohorts[J]. Lancet Neurol, 2021, 20(6): 448-459. DOI: 10.1016/S1474-4422(21)00060-0.
[9]
LANGER K G, BOGOUSSLAVSKY J. The merging tracks of anosognosia and neglect[J]. Eur Neurol, 2020, 83(4): 438-446. DOI: 10.1159/000510397.
[10]
LAFITTE R, JEAGER M, PISCICELLI C, et al. Spatial neglect encompasses impaired verticality representation after right hemisphere stroke[J]. Ann N Y Acad Sci, 2023, 1520(1): 140-152. DOI: 10.1111/nyas.14938.
[11]
SPANÒ B, NARDO D, GIULIETTI G, et al. Left egocentric neglect in early subacute right-stroke patients is related to damage of the superior longitudinal fasciculus[J]. Brain Imaging Behav, 2022, 16(1): 211-218. DOI: 10.1007/s11682-021-00493-w.
[12]
GORE J C. Principles and practice of functional MRI of the human brain[J]. J Clin Invest, 2003, 112(1): 4-9. DOI: 10.1172/JCI19010.
[13]
WU X, WANG L, JIANG H, et al. Frequency-dependent and time-variant alterations of neural activity in post-stroke depression: A resting-state fMRI study[J/OL]. Neuroimage Clin, 2023, 38: 103445 [2023-08-28]. https://pubmed.ncbi.nlm.nih.gov/37269698/. DOI: 10.1016/j.nicl.2023.103445.
[14]
RAO B, WANG S, YU M, et al. Suboptimal states and frontoparietal network-centered incomplete compensation revealed by dynamic functional network connectivity in patients with post-stroke cognitive impairment[J/OL]. Front Aging Neurosci, 2022, 14: 893297 [2023-08-28]. https://pubmed.ncbi.nlm.nih.gov/36003999/. DOI: 10.3389/fnagi.2022.893297.
[15]
YUE X, LI Z, LI Y, et al. Altered static and dynamic functional network connectivity in post-stroke cognitive impairment[J/OL]. Neurosci Lett, 2023, 799: 137097 [2023-08-28]. https://pubmed.ncbi.nlm.nih.gov/36716911/. DOI: 10.1016/j.neulet.2023.137097.
[16]
LI F, LU L, SHANG S, et al. Altered static and dynamic functional network connectivity in post-traumatic headache[J/OL]. J Headache Pain, 2021, 22(1): 137 [2023-08-28]. https://pubmed.ncbi.nlm.nih.gov/34773973/. DOI: 10.1186/s10194-021-01348-x.
[17]
CALHOUN V D, MILLER R, PEARLSON G, et al. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery[J]. Neuron, 2014, 84(2): 262-274. DOI: 10.1016/j.neuron.2014.10.015.
[18]
WANG M, HUANG J, LIU M, et al. Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI[J/OL]. Med Image Anal, 2021, 71: 102063 [2023-08-28]. https://pubmed.ncbi.nlm.nih.gov/33910109/. DOI: 10.1016/j.media.2021.102063.
[19]
RAHAMAN M A, DAMARAJU E, SAHA D K, et al. Statelets: Capturing recurrent transient variations in dynamic functional network connectivity[J]. Hum Brain Mapp, 2022, 43(8): 2503-2518. DOI: 10.1002/hbm.25799.
[20]
VIDAURRE D, LLERA A, SMITH S M, et al. Behavioural relevance of spontaneous, transient brain network interactions in fMRI[J/OL]. Neuroimage, 2021, 229: 117713 [2023-08-28]. https://pubmed.ncbi.nlm.nih.gov/33421594/. DOI: 10.1016/j.neuroimage.2020.117713.
[21]
LIU Y, ZHAO X, TANG Q, et al. Dynamic functional network connectivity associated with musical emotions evoked by different tempi[J]. Brain Connect, 2022, 12(6): 584-597. DOI: 10.1089/brain.2021.0069.
[22]
LURIE D J, KESSLER D, BASSETT D S, et al. Questions and controversies in the study of time-varying functional connectivity in resting fMRI[J]. Netw Neurosci, 2020, 4(1): 30-69. DOI: 10.1162/netn_a_00116.
[23]
LI Y, QIN B, CHEN Q, et al. Altered dynamic functional network connectivity within default mode network of epileptic children with generalized tonic-clonic seizures[J/OL]. Epilepsy Res, 2022, 184: 106969 [2023-08-28]. https://pubmed.ncbi.nlm.nih.gov/35738202/. DOI: 10.1016/j.eplepsyres.2022.106969.
[24]
ESPINOZA F A, LIU J, CIAROCHI J, et al. Dynamic functional network connectivity in Huntington's disease and its associations with motor and cognitive measures[J]. Hum Brain Mapp, 2019, 40(6): 1955-1968. DOI: 10.1002/hbm.24504.
[25]
BONKHOFF A K, ESPINOZA F A, GAZULA H, et al. Acute ischaemic stroke alters the brain's preference for distinct dynamic connectivity states[J]. Brain, 2020, 143(5): 1525-1540. DOI: 10.1093/brain/awaa101.
[26]
VAN DER HORN H J, VERGARA V M, ESPINOZA F A, et al. Functional outcome is tied to dynamic brain states after mild to moderate traumatic brain injury[J]. Hum Brain Mapp, 2020, 41(3): 617-631. DOI: 10.1002/hbm.24827.
[27]
SALMAN M S, DU Y, LIN D, et al. Group ICA for identifying biomarkers in schizophrenia: 'Adaptive' networks via spatially constrained ICA show more sensitivity to group differences than spatio-temporal regression[J/OL]. Neuroimage Clin, 2019, 22: 101747 [2023-08-28]. https://pubmed.ncbi.nlm.nih.gov/30921608/. DOI: 10.1016/j.nicl.2019.101747.
[28]
ALLEN E A, DAMARAJU E, PLIS S M, et al. Tracking whole-brain connectivity dynamics in the resting state[J]. Cereb Cortex, 2014, 24(3): 663-676. DOI: 10.1093/cercor/bhs352.
[29]
DESOWSKA A, TURNER D L. Dynamics of brain connectivity after stroke[J]. Rev Neurosci, 2019, 30(6): 605-623. DOI: 10.1515/revneuro-2018-0082.
[30]
LI Q G, ZHAO C, SHAN Y, et al. Dynamic neural network changes revealed by voxel-based functional connectivity strength in left basal ganglia ischemic stroke[J/OL]. Front Neurosci, 2020, 14: 526645 [2023-08-28]. https://pubmed.ncbi.nlm.nih.gov/33071728/. DOI: 10.3389/fnins.2020.526645.
[31]
LI Z, HU J, WANG Z, et al. Basal ganglia stroke is associated with altered functional connectivity of the left inferior temporal gyrus[J]. J Neuroimaging, 2022, 32(4): 744-751. DOI: 10.1111/jon.12978.
[32]
ZHU H, ZUO L, ZHU W, et al. The distinct disrupted plasticity in structural and functional network in mild stroke with basal ganglia region infarcts[J]. Brain Imaging Behav, 2022, 16(5): 2199-2219. DOI: 10.1007/s11682-022-00689-8.
[33]
ZHANG X, YANG Y, KUAI H, et al. Systematic fusion of multi-source cognitive networks with graph learning-A study on fronto-parietal network[J/OL]. Front Neurosci, 2022, 16: 866734 [2023-08-28]. https://pubmed.ncbi.nlm.nih.gov/35968385/. DOI: 10.3389/fnins.2022.866734.
[34]
CALDINELLI C, CUSACK R. The fronto-parietal network is not a flexible hub during naturalistic cognition[J]. Hum Brain Mapp, 2022, 43(2): 750-759. DOI: 10.1002/hbm.25684.
[35]
BRAAß H, GUTGESELL L, BACKHAUS W, et al. Early functional connectivity alterations in contralesional motor networks influence outcome after severe stroke: a preliminary analysis[J/OL]. Sci Rep, 2023, 13(1): 11010 [2023-08-28]. https://pubmed.ncbi.nlm.nih.gov/37419966/. DOI: 10.1038/s41598-023-38066-0.
[36]
REHME A K, EICKHOFF S B, ROTTSCHY C, et al. Activation likelihood estimation meta-analysis of motor-related neural activity after stroke[J]. Neuroimage, 2012, 59(3): 2771-2782. DOI: 10.1016/j.neuroimage.2011.10.023.
[37]
REHME A K, FINK G R, VON CRAMON D Y, et al. The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI[J]. Cereb Cortex, 2011, 21(4): 756-768. DOI: 10.1093/cercor/bhq140.
[38]
BONKHOFF A K, SCHIRMER M D, BRETZNER M, et al. Abnormal dynamic functional connectivity is linked to recovery after acute ischemic stroke[J]. Hum Brain Mapp, 2021, 42(7): 2278-2291. DOI: 10.1002/hbm.25366.
[39]
LEFAUCHEUR J P, ALEMAN A, BAEKEN C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018)[J]. Clin Neurophysiol, 2020, 131(2): 474-528. DOI: 10.1016/j.clinph.2019.11.002.
[40]
ESPOSITO S, TROJSI F, CIRILLO G, et al. Repetitive transcranial magnetic stimulation (rTMS) of dorsolateral prefrontal cortex may influence semantic fluency and functional connectivity in fronto-parietal network in mild cognitive impairment (MCI)[J/OL]. Biomedicines, 2022, 10(5): 994 [2023-08-28]. https://pubmed.ncbi.nlm.nih.gov/35625731/. DOI: 10.3390/biomedicines10050994.

PREV Alterations of brain mirror homotopic functional connectivity in postpartum women: A resting-state fMRI study
NEXT The value of multi-delay arterial spin labeling in the evaluation of cerebral perfusion in patients with severe arterial stenosis or occlusion
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn