Share:
Share this content in WeChat
X
Clinical Article
The value of multi-delay arterial spin labeling in the evaluation of cerebral perfusion in patients with severe arterial stenosis or occlusion
LI Lulu  SHANG Songan  MO Xiaoxiao  MEI Chao  ZHANG Ninggui  WANG Xue  YANG Xin  WU Yating  YE Jing 

Cite this article as: LI L L, SHANG S A, MO X X, et al. The value of multi-delay arterial spin labeling in the evaluation of cerebral perfusion in patients with severe arterial stenosis or occlusion[J]. Chin J Magn Reson Imaging, 2024, 15(3): 19-25. DOI:10.12015/issn.1674-8034.2024.03.004.


[Abstract] Objective To investigate the value of multi-delayed arterial spin labeling (mASL) technique in evaluating cerebral perfusion changes in patients with severe unilateral internal carotid artery or middle cerebral artery stenosis or occlusion.Materials and Methods Perfusion images obtained from single-delayed pseudo continuous arterial spin labeling (pCASL) and mASL of 34 patients with clinical diagnosis of unilateral internal carotid artery or middle cerebral artery stenosis and occlusion in the Department of Neurology of our hospital were prospectively collected for evaluation of abnormal perfusion area on the side of arterial stenosis. The consistency of two observers in judging the abnormal perfusion area on the stenosis side was evaluated by Kappa consistency test. The region of interest was manually delineated in the abnormal perfusion region and perfusion parameter values were obtained, including cerebral blood flow (CBF2020ms) obtained from pCASL perfusion images and corrected cerebral blood flow (cCBF), arterial arrival time (ATT), arterial cerebral blood volume (aCBV) and relative arterial transit time (rATT) obtained from mASL. Paired sample t test was used to compare the differences of CBF2020ms and cCBF, and independent sample t test was used to compare the differences of ATT on the stenosis side and rATT.Results According to the results of pCASL and mASL, in 34 patients, the perfusion images of 10 cases were consistent (8 cases were hypoperfusion, 2 cases were hypoperfusion with local high signal), and the perfusion images of 24 cases were not completely consistent (3 cases of pCASL showed normal perfusion, mASL showed low perfusion; pCASL showed hypoperfusion with local hyperintensity in 21 cases, and mASL showed hypoperfusion). There was a high degree of agreement between the two observers (Kappa coefficient=0.788, P<0.001). mASL showed that ATT on the stenotic side was higher than rATT (P<0.001). In patients with hypoperfusion on both pCASL and mASL, CBF2020ms was lower than cCBF (P=0.173). In patients with both pCASL and mASL showing hypoperfusion with local hyperintensity, ATT is prolonged and aCBV is increased. CBF2020ms was significantly higher than cCBF in patients with pCASL showing hypoperfusion with local high signal and mASL showing hypoperfusion (P<0.001). Patients with normal perfusion on pCASL and hypoperfusion on mASL were found to have prolonged ATT but preserved normal aCBV.Conclusions Multi-parameter cCBF, ATT and aCBV obtained by multi-delay arterial spin labeling technique can evaluate the changes of brain perfusion in patients with severe unilateral internal carotid artery or middle cerebral artery stenosis or occlusion more sensibly and accurately, and provide guidance for clinical diagnosis and treatment.
[Keywords] arterial spin labeling;cerebral blood flow;cerebral blood volume;arterial stenosis;arterial occlusion;magnetic resonance imaging

LI Lulu1, 2   SHANG Songan2   MO Xiaoxiao2, 3   MEI Chao2, 3   ZHANG Ninggui1, 2   WANG Xue2, 3   YANG Xin2, 3   WU Yating2, 3   YE Jing2*  

1 The Clinical Medicine College of Yangzhou University, Yangzhou 225001, China

2 Department of Medical Imaging, Northern Jiangsu People's Hospital, Yangzhou 225001, China

3 Dalian Medical University, Dalian 116031, China

Corresponding author: YE J, E-mail: yzhyejing@163.com

Conflicts of interest   None.

Received  2023-10-24
Accepted  2024-01-31
DOI: 10.12015/issn.1674-8034.2024.03.004
Cite this article as: LI L L, SHANG S A, MO X X, et al. The value of multi-delay arterial spin labeling in the evaluation of cerebral perfusion in patients with severe arterial stenosis or occlusion[J]. Chin J Magn Reson Imaging, 2024, 15(3): 19-25. DOI:10.12015/issn.1674-8034.2024.03.004.

[1]
WANG Y, ZHAO X, LIU L, et al. Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: the Chinese Intracranial Atherosclerosis (CICAS) Study[J]. Stroke, 2014, 45(3): 663-669. DOI: 10.1161/STROKEAHA.113.003508.
[2]
SCHIPHORST A T, TURC G, HASSEN W B, et al. Incidence, severity and impact on functional outcome of persistent hypoperfusion despite large-vessel recanalization, a potential marker of impaired microvascular reperfusion: Systematic review of the clinical literature[J]. J Cereb Blood Flow Metab, 2024, 44(1): 38-49. DOI: 10.1177/0271678X231209069.
[3]
LI C M, WU X Y, DENG X Y. Application value of 3.0 T magnetic resonance 3D-ASL combined with DWI technology in cerebral ischemic diseases[J]. Journal of Imaging Research and Medical Application, 2022, 6(17): 89-91.
[4]
JAISWAL S K, FULING Y, LI M. Prevalence of intracranial artery stenosis in patients with acute ischemic stroke in a tertiary care hospital of China[J]. JNMA J Nepal Med Assoc, 2020, 58(229): 634-639. DOI: 10.31729/jnma.5201.
[5]
YAN T Z, ZHANG C, LIU Q X, et al. The correlation between the characteristics of middle cerebral artery atherosclerotic plaque, cerebral perfusion and the occurrence of acute cerebral infarction[J]. Chin J Magn Reson Imaging, 2022, 13(5): 106-110. DOI: 10.12015/issn.1674-8034.2022.05.019.
[6]
MOSCONI M G, PACIARONI M. Treatments in ischemic stroke: Current and future[J]. Eur Neurol, 2022, 85(5): 349-366. DOI: 10.1159/000525822.
[7]
VACLAVIK D, VOLNY O, CIMFLOVA P, et al. The importance of CT perfusion for diagnosis and treatment of ischemic stroke in anterior circulation[J/OL]. J Integr Neurosci, 2022, 21(3): 92 [2023-10-24]. https://pubmed.ncbi.nlm.nih.gov/35633173/. DOI: 10.31083/j.jin2103092.
[8]
ZEDDE M, NAPOLI M, GRISENDI I, et al. Perfusion status in lacunar stroke: A pathophysiological issue[J/OL]. Diagnostics (Basel), 2023, 13(12): 2003 [2023-10-24]. https://pubmed.ncbi.nlm.nih.gov/37370898/. DOI: 10.3390/diagnostics13122003.
[9]
LINDNER T, BOLAR D S, ACHTEN E, et al. Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging[J]. Magn Reson Med, 2023, 89(5): 2024-2047. DOI: 10.1002/mrm.29572.
[10]
QIN Y L, YU H, CHEN Y Q. Research progress of multimodal MRI in the diagnosis and prognosis assessment of acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(8): 112-116. DOI: 10.12015/issn.1674-8034.2022.08.025.
[11]
LI R, JIN S, WANG Y, et al. Brain perfusion alterations on 3D pseudocontinuous arterial spin-labeling MR imaging in patients with autoimmune encephalitis: A case series and literature review[J]. AJNR Am J Neuroradiol, 2022, 43(5): 701-706. DOI: 10.3174/ajnr.A7478.
[12]
WANG L W, DU J J, HAN B Y. Application value of 3.0 T MRI pCASL technology in evaluating the curative effect of children with cerebral palsy[J]. Chin J Magn Reson Imaging, 2020, 11(9): 726-729. DOI: 10.12015/issn.1674-8034.2020.09.002.
[13]
HAIDAR H, MAJZOUB R E, HAJEER S, et al. Arterial spin labeling (ASL-MRI) versus fluorodeoxyglucose-PET (FDG-PET) in diagnosing dementia: a systematic review and meta-analysis[J/OL]. BMC Neurol, 2023, 23(1): 385 [2023-10-24]. https://pubmed.ncbi.nlm.nih.gov/37875879/. DOI: 10.1186/s12883-023-03432-y.
[14]
YAN C M, MA Q F. Clinical application of arterial spin labeling in acute ischemic stroke[J]. Chinese Journal of Cerebrovascular Disease (electronic edition), 2020, 14(3): 151-154. DOI: 10.11817/j.issn.1673-9248.2020.03.006.
[15]
BINNIE L R, PAULS M M H, BENJAMIN P, et al. Test-retest reliability of arterial spin labelling for cerebral blood flow in older adults with small vessel disease[J]. Transl Stroke Res, 2022, 13(4): 583-594. DOI: 10.1007/s12975-021-00983-5.
[16]
SHIRVANI S, TOKARCZUK P, STATTON B, et al. Motion-corrected multiparametric renal arterial spin labelling at 3 T: reproducibility and effect of vasodilator challenge[J]. Eur Radiol, 2019, 29(1): 232-240. DOI: 10.1007/s00330-018-5628-3.
[17]
JIANG H L, SU W, CHEN H Y, et al. Application value of arterial spin labeling imaging with dual parameters in evaluating collateral circulation and prognosis of acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(3): 53-57, 80. DOI: 10.12015/issn.1674-8034.2023.03.010.
[18]
YU H, LI Y, FENG Y, et al. Enhanced arterial spin labeling magnetic resonance imaging of cerebral blood flow of the anterior and posterior circulations in patients with intracranial atherosclerotic stenosis[J/OL]. Front Neurosci, 2021, 15: 823876 [2023-10-24]. https://pubmed.ncbi.nlm.nih.gov/35250438/. DOI: 10.3389/fnins.2021.823876.
[19]
KIM H G, LEE J H, CHOI J W, et al. Multidelay arterial spin-labeling MRI in neonates and Infants: Cerebral perfusion changes during brain maturation[J]. AJNR Am J Neuroradiol, 2018, 39(10): 1912-1918. DOI: 10.3174/ajnr.A5774.
[20]
MORI T, ITO H, HARADA M, et al. Multi-delay arterial spin labeling brain magnetic resonance imaging study for pediatric autism[J]. Brain Dev, 2020, 42(4): 315-321. DOI: 10.1016/j.braindev.2020.01.007.
[21]
AMRAN D, ARTZI M, AIZENSTEIN O, et al. BV-GAN: 3D time-of-flight magnetic resonance angiography cerebrovascular vessel segmentation using adversarial CNNs[J/OL]. J Med Imaging (Bellingham), 2022, 9(4): 044503 [2023-10-24]. https://pubmed.ncbi.nlm.nih.gov/36061214/. DOI: 10.1117/1.JMI.9.4.044503.
[22]
AROUS E J, JUDELSON D R, AGRAWAL A, et al. Computed tomography angiography-derived area stenosis calculations overestimate degree of carotid stenosis compared with North American Symptomatic Carotid Endarterectomy Trial-derived diameter stenosis calculations[J/OL]. J Vasc Surg, 2021, 74(2): 579-585.e2 [2023-10-24]. https://pubmed.ncbi.nlm.nih.gov/33548432/. DOI: 10.1016/j.jvs.2020.12.085.
[23]
YANG L, HE Y Y, LI Y Y, et al. 3D-ASL of arterial transit artifact and the intra-arterial high-intensity signal in the evaluation of short-term clinical outcomes in patients with acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(10): 36-41. DOI: 10.12015/issn.1674-8034.2023.10.007.
[24]
SUZUKI Y, CLEMENT P, DAI W, et al. ASL lexicon and reporting recommendations: A consensus report from the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI)[J/OL]. Magn Reson Med, 2023 [2023-10-24]. https://pubmed.ncbi.nlm.nih.gov/37876299/. DOI: 10.1002/mrm.29815.
[25]
Quality Management and Safety Management Group, Radiology Branch of Chinese Medical Association, Magnetic resonance Group, Radiology Branch of Chinese Medical Association. Expert consensus on the standardized application of arterial spin-labeled cerebral perfusion MRI technique[J]. Chin J Radiol, 2016, 50(11): 817-824. DOI: 10.3760/cma.j.issn.1005-1201.2016.11.003.
[26]
LYU J, MA N, LIEBESKIND D S, et al. Arterial spin labeling magnetic resonance imaging estimation of antegrade and collateral flow in unilateral middle cerebral artery stenosis[J]. Stroke, 2016, 47(2): 428-433. DOI: 10.1161/STROKEAHA.115.011057.
[27]
FAN A P, GUO J, KHALIGHI M M, et al. Long-delay arterial spin labeling provides more accurate cerebral blood flow measurements in moyamoya patients: A simultaneous positron emission tomography/MRI study[J]. Stroke, 2017, 48(9): 2441-2449. DOI: 10.1161/STROKEAHA.117.017773.
[28]
AMEMIYA S, WATANABE Y, TAKEI N, et al. Arterial transit time-based multidelay combination strategy improves arterial spin labeling cerebral blood flow measurement accuracy in severe steno-occlusive diseases[J]. J Magn Reson Imaging, 2022, 55(1): 178-187. DOI: 10.1002/jmri.27823.
[29]
SOGABE S, SATOMI J, TADA Y, et al. Intra-arterial high signals on arterial spin labeling perfusion images predict the occluded internal carotid artery segment[J]. Neuroradiology, 2017, 59(6): 587-595. DOI: 10.1007/s00234-017-1828-9.
[30]
LI B H, WANG J H, YANG S, et al. Cerebral blood volume index may be a predictor of independent outcome of thrombectomy in stroke patients with low ASPECTS[J]. J Clin Neurosci, 2022, 103: 188-192. DOI: 10.1016/j.jocn.2022.07.006.
[31]
BROOCKS G, HAUPT W, MCDONOUGH R, et al. Impact of relative cerebral blood volume reduction on early neurological improvement in extensive ischemic stroke[J]. Eur J Neurol, 2022, 29(11): 3264-3272. DOI: 10.1111/ene.15491.
[32]
GAO P Y. CT perfusion imaging findings and staging of local cerebral hypoperfusion in the early stage of cerebral infarction[J]. Chin J Stroke, 2008, 3(2): 114-119. DOI: 10.3969/j.issn.1673-5765.2008.02.008.
[33]
ZHANG Y, CHEN Z, WANG X L, et al. MRA study of spontaneous recanalization of cerebral infarction in the internal carotid artery system[J]. International Journal of Medical Radiology, 2017, 40(5): 511-515. DOI: 10.19300/j.2017.L5405zt.
[34]
YU S, LIEBESKIND D S, DUA S, et al. Postischemic hyperperfusion on arterial spin labeled perfusion MRI is linked to hemorrhagic transformation in stroke[J]. J Cereb Blood Flow Metab, 2015, 35(4): 630-637. DOI: 10.1038/jcbfm.2014.238.
[35]
NIIBO T, OHTA H, MIYATA S, et al. Prediction of blood-brain barrier disruption and intracerebral hemorrhagic infarction using arterial spin-labeling magnetic resonance imaging[J]. Stroke, 2017, 48(1): 117-122. DOI: 10.1161/STROKEAHA.116.013923.

PREV Study of lateralization changes in the basal ganglia stroke patients based on functional connectivity analysis
NEXT The correlation between symptomatic carotid atherosclerotic plaques and short-term mRS score after ischemic stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn