Share:
Share this content in WeChat
X
Clinical Article
Clinical application of free breathing with motion correction artificial intelligence cine sequence of cardiac magnetic resonance in patients with heart failure
RAN Lingping  HUANG Lu  YAN Xianghu  ZHAO Yun  YANG Zhaoxia  ZHOU Shuchang  XIA Liming 

Cite this article as: RAN L P, HUANG L, YAN X H, et al. Clinical application of free breathing with motion correction artificial intelligence cine sequence of cardiac magnetic resonance in patients with heart failure[J]. Chin J Magn Reson Imaging, 2024, 15(3): 62-67, 73. DOI:10.12015/issn.1674-8034.2024.03.011.


[Abstract] Objective To explore the feasibility of free-breathing with motion correction artificial intelligence (FB-MOCO AI) cine sequence of cardiac magnetic resonance (CMR) in patients with heart failure by evaluating the image quality, biventricular volumetric and functional parameters.Materials and Methods From August 2022 to May 2023, 29 patients with heart failure who underwent CMR in our hospital were prospectively consecutive enrolled. All patients underwent cardiac short-axis scans with conventional breath-hold (BH) cine and FB-MOCO AI cine sequences. The overall image quality of the two cine sequences was scored by two radiologists (5-point scale). The parameters of biventricular volume and function including end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and left ventricular end-diastolic mass (LVEDM) were measured. Paired t-test or Wilcoxon signed-rank test were used to assess differences in quantitative data and qualitative scoring data between the two sequences. The correlation analysis of the quantitative parameters between the two sequences was also assessed. Bland-Altman analysis was performed to assess the agreement of quantitative parameters obtained from different sequences.Results The durations of FB-MOCO AI cine [(14.3±1.9) s] scans were significantly shorter than conventional BH cine [(79.2±11.4) s] (P˂0.001). Overall image quality of FB-MOCO AI cine (4.4±0.5) were comparable to conventional BH cine (4.3±0.7) (P=0.343). All measured biventricular volumetric and functional parameters and LVEDM of two cine sequences presented no statistical difference (P˃0.05 for all), and there was excellent correlations (r˃0.94, P˂0.001 for all). Bland-Altman analysis showed that all the quantitative parameters between the two cine sequences had excellent agreement with a mean difference close to zero and a small range of variation.Conclusions Compared to conventional breath-hold cine, the FB-MOCO AI cine method in patients with heart failure achieved comparable image quality and biventricular volumetric and functional parameters with shortened scan times, suggesting it has the potential to replace conventional cine sequence in patients with heart failure for clinical application.
[Keywords] cardiac;heart failure;artificial intelligence;free breathing;motion correction;magnetic resonance imaging

RAN Lingping   HUANG Lu   YAN Xianghu   ZHAO Yun   YANG Zhaoxia   ZHOU Shuchang   XIA Liming*  

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

Corresponding author: XIA L M, E-mail: lmxia@tjh.tjmu.edu.cn

Conflicts of interest   None.

Received  2023-09-03
Accepted  2023-12-25
DOI: 10.12015/issn.1674-8034.2024.03.011
Cite this article as: RAN L P, HUANG L, YAN X H, et al. Clinical application of free breathing with motion correction artificial intelligence cine sequence of cardiac magnetic resonance in patients with heart failure[J]. Chin J Magn Reson Imaging, 2024, 15(3): 62-67, 73. DOI:10.12015/issn.1674-8034.2024.03.011.

[1]
WANG H, CHAI K, DU M H, et al. Prevalence and incidence of heart failure among urban patients in China: a national population-based analysis[J/OL]. Circ Heart Fail, 2021, 14(10): e008406 [2023-09-02]. https://pubmed.ncbi.nlm.nih.gov/34455858/. DOI: 10.1161/CIRCHEARTFAILURE.121.008406.
[2]
CAI A P, ZHENG C Y, QIU J Y, et al. Prevalence of heart failure stages in the general population and implications for heart failure prevention: reports from the China Hypertension Survey 2012-15[J]. Eur J Prev Cardiol, 2023, 30(13): 1391-1400. DOI: 10.1093/eurjpc/zwad223.
[3]
LEINER T, BOGAERT J, FRIEDRICH M G, et al. SCMR Position Paper (2020) on clinical indications for cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 76 [2023-09-02]. https://pubmed.ncbi.nlm.nih.gov/33161900/. DOI: 10.1186/s12968-020-00682-4.
[4]
NGUYEN K L, HU P, FINN J P. Cardiac magnetic resonance quantification of structure-function relationships in heart failure[J]. Heart Fail Clin, 2021, 17(1): 9-24. DOI: 10.1016/j.hfc.2020.08.001.
[5]
AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION TASK FORCE ON EXPERT CONSENSUS DOCUMENTS, HUNDLEY W G, BLUEMKE D A, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents[J]. J Am Coll Cardiol, 2010, 55(23): 2614-2662. DOI: 10.1016/j.jacc.2009.11.011.
[6]
PLEIN S, BLOOMER T N, RIDGWAY J P, et al. Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging[J]. J Magn Reson Imaging, 2001, 14(3): 230-236. DOI: 10.1002/jmri.1178.
[7]
LIN L, LI Y Y, WANG J, et al. Free-breathing cardiac cine MRI with compressed sensing real-time imaging and retrospective motion correction: clinical feasibility and validation[J]. Eur Radiol, 2023, 33(4): 2289-2300. DOI: 10.1007/s00330-022-09210-7.
[8]
RAHSEPAR A A, SAYBASILI H, GHASEMIESFE A, et al. Motion-corrected real-time cine magnetic resonance imaging of the heart: initial clinical experience[J]. Invest Radiol, 2018, 53(1): 35-44. DOI: 10.1097/RLI.0000000000000406.
[9]
YANG X Y, ZHONG J L, PENG R C, et al. A comparative study on the evaluation of cardiac function in patients with acute myocardial infarction using compressed sensing cardiac cine imaging compared with traditional cardiac cine imaging[J]. Chin J Magn Reson Imag, 2021, 12(3): 49-53, 58. DOI: 10.12015/issn.1674-8034.2021.03.011.
[10]
LI Y Y, LIN L, WANG J, et al. Application value of cardiac cine with compressed sensing real-time imaging and retrospective fully automated non-rigid motion correction for assessment of right ventricular function and strain in patients with pulmonary arterial hypertension[J]. Chin J Magn Reson Imag, 2022, 13(10): 114-120. DOI: 10.12015/issn.1674-8034.2022.10.017.
[11]
KIDO T, KIDO T, NAKAMURA M, et al. Compressed sensing real-time cinecardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold[J/OL]. J Cardiovasc Magn Reson, 2016, 18(1): 50 [2023-09-02]. https://pubmed.ncbi.nlm.nih.gov/27553656/. DOI: 10.1186/s12968-016-0271-0.
[12]
MA Y, HOU Y, MA Q, et al. Compressed SENSE single-breath-hold and free-breathing cine imaging for accelerated clinical evaluation of the left ventricle[J/OL]. Clin Radiol, 2019, 74(4): 325.e9-325325.e17 [2023-09-02]. https://pubmed.ncbi.nlm.nih.gov/30686503/. DOI: 10.1016/j.crad.2018.12.012.
[13]
STEEDEN J A, KOWALIK G T, TANN O, et al. Real-time assessment of right and left ventricular volumes and function in children using high spatiotemporal resolution spiral bSSFP with compressed sensing[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1): 79 [2023-09-02]. https://pubmed.ncbi.nlm.nih.gov/30518390/. DOI: 10.1186/s12968-018-0500-9.
[14]
JOHNSON P M, RECHT M P, KNOLL F. Improving the speed of MRI with artificial intelligence[J]. Semin Musculoskelet Radiol, 2020, 24(1): 12-20. DOI: 10.1055/s-0039-3400265.
[15]
HAMMERNIK K, KLATZER T, KOBLER E, et al. Learning a variational network for reconstruction of accelerated MRI data[J]. Magn Reson Med, 2018, 79(6): 3055-3071. DOI: 10.1002/mrm.26977.
[16]
CHANDRA S S, BRAN LORENZANA M, LIU X W, et al. Deep learning in magnetic resonance image reconstruction[J]. J Med Imaging Radiat Oncol, 2021, 65(5): 564-577. DOI: 10.1111/1754-9485.13276.
[17]
ARGENTIERO A, MUSCOGIURI G, RABBAT M G, et al. The applications of artificial intelligence in cardiovascular magnetic resonance-a comprehensive review[J/OL]. J Clin Med, 2022, 11(10): 2866 [2023-09-02]. https://pubmed.ncbi.nlm.nih.gov/35628992/. DOI: 10.3390/jcm11102866.
[18]
MASUTANI E M, BAHRAMI N, HSIAO A. Deep learning single-frame and multiframe super-resolution for cardiac MRI[J]. Radiology, 2020, 295(3): 552-561. DOI: 10.1148/radiol.2020192173.
[19]
YOON S, NAKAMORI S, AMYAR A, et al. Accelerated cardiac MRI cine with use of resolution enhancement generative adversarial inline neural network[J/OL]. Radiology, 2023, 307(5): e222878 [2023-09-02]. https://pubmed.ncbi.nlm.nih.gov/37249435/. DOI: 10.1148/radiol.222878.
[20]
ABDI M, FENG X, SUN C Y, et al. Suppression of artifact-generating echoes in cine DENSE using deep learning[J]. Magn Reson Med, 2021, 86(4): 2095-2104. DOI: 10.1002/mrm.28832.
[21]
PEDNEKAR A, KOCAOGLU M, WANG H, et al. Accelerated cine cardiac MRI using deep learning-based reconstruction: a systematic evaluation[J/OL]. J Magn Reson Imaging, 2023 [2023-09-02]. https://pubmed.ncbi.nlm.nih.gov/37855257/. DOI: 10.1002/jmri.29081.
[22]
YAN X H, LUO Y, CHEN X, et al. From compressed-sensing to deep learning MR: comparative biventricular cardiac function analysis in a patient cohort[J/OL]. J Magn Reson Imaging, 2023 [2023-09-02]. https://pubmed.ncbi.nlm.nih.gov/37435633/. DOI: 10.1002/jmri.28899.
[23]
ZUCKER E J, SANDINO C M, KINO A, et al. Free-breathing accelerated cardiac MRI using deep learning: validation in children and young adults[J]. Radiology, 2021, 300(3): 539-548. DOI: 10.1148/radiol.2021202624.
[24]
TAKAKADO M, KIDO T, OGAWA R, et al. Free-breathing cardiovascular cine magnetic resonance imaging using compressed-sensing and retrospective motion correction: accurate assessment of biventricular volume at 3T[J]. Jpn J Radiol, 2023, 41(2): 142-152. DOI: 10.1007/s11604-022-01344-4.
[25]
HU Y M, WU X L, HU Z H, et al. Study of formula for calculating body surface areas of the Chinese adults[J]. Acta Physiol Sin, 1999, 51(1): 45-48. DOI: 10.3321/j.issn:0371-0874.1999.01.008.
[26]
SCHLEMPER J, CABALLERO J, HAJNAL J V, et al. A deep cascade of convolutional neural networks for dynamic MR image reconstruction[J]. IEEE Trans Med Imaging, 2018, 37(2): 491-503. DOI: 10.1109/TMI.2017.2760978.
[27]
DEMIREL Ö B, ZHANG C, YAMAN B, et al. High-fidelity database-free deep learning reconstruction for real-time cine cardiac MRI[J/OL]. bioRxiv, 2023: 2023.02.13.528388 [2023-09-02]. https://pubmed.ncbi.nlm.nih.gov/36824797/. DOI: 10.1101/2023.02.13.528388.
[28]
EL-REWAIDY H, FAHMY A S, PASHAKHANLOO F, et al. Multi-domain convolutional neural network (MD-CNN) for radial reconstruction of dynamic cardiac MRI[J]. Magn Reson Med, 2021, 85(3): 1195-1208. DOI: 10.1002/mrm.28485.
[29]
SANDINO C M, LAI P, VASANAWALA S S, et al. Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction[J]. Magn Reson Med, 2021, 85(1): 152-167. DOI: 10.1002/mrm.28420.
[30]
GHODRATI V, BYDDER M, ALI F, et al. Retrospective respiratory motion correction in cardiac cine MRI reconstruction using adversarial autoencoder and unsupervised learning[J/OL]. NMR Biomed, 2021, 34(2): e4433 [2023-09-02]. https://pubmed.ncbi.nlm.nih.gov/33258197/. DOI: 10.1002/nbm.4433.
[31]
KOCAOGLU M, PEDNEKAR A S, WANG H, et al. Breath-hold and free-breathing quantitative assessment of biventricular volume and function using compressed SENSE: a clinical validation in children and young adults[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 54 [2023-09-02]. https://pubmed.ncbi.nlm.nih.gov/32713347/. DOI: 10.1186/s12968-020-00642-y.
[32]
CHRISTOPHER A B, QUINN R E, ZOULFAGHARIAN S, et al. Motion-corrected cardiac MRI is associated with decreased anesthesia exposure in children[J]. Pediatr Radiol, 2020, 50(12): 1709-1716. DOI: 10.1007/s00247-020-04766-2.
[33]
RÖWER L M, RADKE K L, HUßMANN J, et al. Comparison of cardiac volumetry using real-time MRI during free-breathing with standard cine MRI during breath-hold in children[J]. Pediatr Radiol, 2022, 52(8): 1462-1475. DOI: 10.1007/s00247-022-05327-5.
[34]
MORALES M A, ASSANA S, CAI X Y, et al. An inline deep learning based free-breathing ECG-free cine for exercise cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 47 [2023-09-02]. https://pubmed.ncbi.nlm.nih.gov/35948936/. DOI: 10.1186/s12968-022-00879-9.
[35]
ORII M, SONE M, OSAKI T, et al. Reliability of respiratory-gated real-time two-dimensional cine incorporating deep learning reconstruction for the assessment of ventricular function in an adult population[J]. Int J Cardiovasc Imaging, 2023, 39(5): 1001-1011. DOI: 10.1007/s10554-023-02793-2.
[36]
KIDO T, KIDO T, NAKAMURA M, et al. Assessment of left ventricular function and mass on free-breathing compressed sensing real-time cine imaging[J]. Circ J, 2017, 81(10): 1463-1468. DOI: 10.1253/circj.CJ-17-0123.

PREV Value of 4D-Flow MRI in evaluating left ventricular outflow tract peak velocity in hypertrophic cardiomyopathy: A proof-of-concept study
NEXT Prognostic value of myocardial signal intensity heterogeneity based on late gadolinium enhancement in cardiac magnetic resonance in patients with myocarditis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn