Share:
Share this content in WeChat
X
Clinical Article
Value of the CMR feature tracking technique in the assessment of the left heart in patients with Parkinson's disease
YUE Xun  LIU Ling  PENG Pengfei  PU Qian  YANG Huiyi  MING Yue  YUE Shuting  HUANG Xiaohua  XU Yanming  SUN Jiayu 

Cite this article as: YUE X, LIU L, PENG P F, et al. Value of the CMR feature tracking technique in the assessment of the left heart in patients with Parkinson's disease[J]. Chin J Magn Reson Imaging, 2024, 15(3): 74-80. DOI:10.12015/issn.1674-8034.2024.03.013.


[Abstract] Objective To evaluate left ventricular structure and function in patients with Parkinson's disease (PD) by cardiac magnetic resonance feature tracking (CMR-FT). The factors affecting its structure and function were also investigated.Materials and Methods Prospective inclusion of 39 PD patients (PD group) who visited West China Hospital of Sichuan University from March 2022 to August 2023, and 34 age- and gender-matched healthy controls (control group) recruited during the same period, all completed routine cardiac magnetic resonance (CMR) examinations. CVI42 software was used to obtain the conventional cardiac function and myocardial strain parameters of the left ventricle and left atrium. Left ventricular parameters included left ventricular end-systolic volume, end-diastolic volume, myocardial mass, ejection fraction, global circumferential strain, radial strain and longitudinal strain. Left atrium parameters included ejection fraction, volume, strain and strain rate during the left atrium reserve phase, catheter phase and pumping phase. Independent sample t test or Mann-Whitney U test was used to analyze the differences between groups in each parameter. Pearson or Spearman correlation coefficient model was used to analyze the correlation of conventional cardiac function and strain parameters with motor function and autonomic nerve function.Results Left ventricular ejection fraction [(62.01±6.59) % vs. (64.84±4.70) %] and global longitudinal strain [(-17.25±1.57) % vs. (-18.28±1.99) %] in the PD group were lower than those in the control group, and the differences were statistically significant (all P<0.05). Left ventricular end-systolic volume (LVESV) [(51.17±16.56) mL vs. (42.56±9.06) mL], LVESV index (LVESVi) [(30.44±8.00) mL•m-2 vs. (25.56±5.14) mL•m-2]、, left ventricular end-diastolic volume index (LVEDVi) [(79.31±10.76) mL•m-2 vs. (72.97±12.51) mL•m-2] and left ventricular mass index (LV massi) [41.82 (33.11, 47.77) g•m-2 vs. 33.71 (32.27, 38.78) g•m-2] in the PD group were higher than those in the control group, and the difference was statistically significant (P<0.05). Left atrial ejection fraction, strain and strain rate during reserve, catheter and pump phases were significantly lower in the PD group than in the control group (all P<0.05). Correlation analysis showed that the left atrial reserve strain and strain rate were negatively correlated with the unified Parkinson's disease rating scale Ⅲ (UPDRS Ⅲ) score (r=-0.409, -0.355, P<0.05). Left atrial ejection fraction and strain during the catheter phase were negatively correlated with UPDRS Ⅲ score (r=-0.326, -0.482, P<0.05), and strain rate was positively correlated with UPDRS Ⅲ score (r=0.417, P=0.008). The left atrial reserve strain and strain rate were negatively correlated with the scores of the scales for outcomes in Parkinson's disease-autonomic (SCOPA-AUT) (r=-0.535, -0.319; All P<0.05). The left atrial catheterization strain was negatively correlated with SCOPA-AUT score (r=-0.319, P=0.048), and strain rate was positively correlated with SCOPA-AUT score (r=0.359, P=0.025). The left atrial strain during pumping was negatively correlated with SCOPA-AUT (r=-0.342, P=0.033).Conclusions The strain and strain rate parameters obtained from CMR-FT can early assess the degree of cardiac dysfunction in PD patients. Left ventricular systolic function and left atrial reserve, catheter and pump function are impaired in PD patients. Left atrial reserve function and catheter function are related to the severity of motor dysfunction and autonomic dysfunction.
[Keywords] Parkinson's disease;cardiac magnetic resonance;feature tracking technology;myocardial strain;left heart;magnetic resonance imaging

YUE Xun1, 2   LIU Ling3   PENG Pengfei2   PU Qian2   YANG Huiyi1, 2   MING Yue2   YUE Shuting1, 2   HUANG Xiaohua1   XU Yanming3   SUN Jiayu2*  

1 Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637002, China

2 Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China

3 Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China

Corresponding author: SUN J Y, E-mail: sunjiayu@wchscu.cn

Conflicts of interest   None.

Received  2023-09-25
Accepted  2024-02-01
DOI: 10.12015/issn.1674-8034.2024.03.013
Cite this article as: YUE X, LIU L, PENG P F, et al. Value of the CMR feature tracking technique in the assessment of the left heart in patients with Parkinson's disease[J]. Chin J Magn Reson Imaging, 2024, 15(3): 74-80. DOI:10.12015/issn.1674-8034.2024.03.013.

[1]
LANG A E, ESPAY A J. Disease modification in Parkinson's disease: current approaches, challenges, and future considerations[J]. Mov Disord, 2018, 33(5): 660-677. DOI: 10.1002/mds.27360.
[2]
TYSNES O B, STORSTEIN A. Epidemiology of Parkinson's disease[J]. J Neural Transm, 2017, 124(8): 901-905. DOI: 10.1007/s00702-017-1686-y.
[3]
HONG C T, TAN S N, HUANG T W. Psychotherapy for the treatment of anxiety and depression in patients with parkinson disease: a meta-analysis of randomized controlled trials[J/OL]. J Am Med Dir Assoc, 2021, 22(11): 2289-2295.e2 [2023-09-24]. https://pubmed.ncbi.nlm.nih.gov/33957132/. DOI: 10.1016/j.jamda.2021.03.031.
[4]
SOUSOURI G, BAUMANN C R, IMBACH L L, et al. Sleep electroencephalographic asymmetry in Parkinson's disease patients before and after deep brain stimulation[J]. Clin Neurophysiol, 2021, 132(4): 857-863. DOI: 10.1016/j.clinph.2020.12.027.
[5]
TWELVES D, PERKINS K S M, COUNSELL C. Systematic review of incidence studies of Parkinson's disease[J]. Mov Disord, 2003, 18(1): 19-31. DOI: 10.1002/mds.10305.
[6]
XU J, GONG D D, MAN C F, et al. Parkinson's disease and risk of mortality: meta-analysis and systematic review[J]. Acta Neurol Scand, 2014, 129(2): 71-79. DOI: 10.1111/ane.12201.
[7]
PIQUERAS-FLORES J, LÓPEZ-GARCÍA A, MORENO-REIG Á, et al. Structural and functional alterations of the heart in Parkinson's disease[J]. Neurol Res, 2018, 40(1): 53-61. DOI: 10.1080/01616412.2017.1390933.
[8]
ZESIEWICZ T A, STROM J A, BORENSTEIN A R, et al. Heart failure in Parkinson's disease: analysis of the United States medicare current beneficiary survey[J]. Parkinsonism Relat Disord, 2004, 10(7): 417-420. DOI: 10.1016/j.parkreldis.2004.04.001.
[9]
STRANO S, FANCIULLI A, RIZZO M, et al. Cardiovascular dysfunction in untreated Parkinson's disease: a multi-modality assessment[J/OL]. J Neurol Sci, 2016, 370: 251-255 [2023-09-24]. https://pubmed.ncbi.nlm.nih.gov/27772769/. DOI: 10.1016/j.jns.2016.09.036.
[10]
MOKADEM M O EL, HASSAN A, HUSSEIN M, et al. The potential role of 2D-speckle tracking echocardiography for detecting left ventricular systolic dysfunction in patients with Parkinson's disease: a case control study[J]. Acta Cardiol, 2021, 76(9): 979-986. DOI: 10.1080/00015385.2020.1858251.
[11]
PEDRIZZETTI G, CLAUS P, KILNER P J, et al. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use[J/OL]. J Cardiovasc Magn Reson, 2016, 18(1): 51 [2023-09-24]. https://pubmed.ncbi.nlm.nih.gov/27561421/. DOI: 10.1186/s12968-016-0269-7.
[12]
SEETHARAM K, LERAKIS S. Cardiac magnetic resonance imaging: the future is bright[J/OL]. F1000Res, 2019, 8: F1000FacultyRev-F1000Faculty1636 [2023-09-24]. https://pubmed.ncbi.nlm.nih.gov/31543951/. DOI: 10.12688/f1000research.19721.1.
[13]
MUSER D, CASTRO S A, SANTANGELI P, et al. Clinical applications of feature-tracking cardiac magnetic resonance imaging[J]. World J Cardiol, 2018, 10(11): 210-221. DOI: 10.4330/wjc.v10.i11.210.
[14]
Parkinson's Disease and Movement Disorders Group of Chinese Society of Neurology. Diagnostic criteria of Parkinson's disease in China (2016 edition)[J]. Chin J Neurol, 2016, 49(4): 268-271. DOI: 10.3760/cma.j.issn.1006-7876.2016.04.002.
[15]
KIM M S, RYU H S, PARK K W, et al. Age-dependent efficacy of subthalamic nucleus deep brain stimulation in young- and late-onset Parkinson's disease based on a 10 year follow-up[J/OL]. J Neurol Sci, 2020, 416: 117004 [2023-09-24]. https://pubmed.ncbi.nlm.nih.gov/32622084/. DOI: 10.1016/j.jns.2020.117004.
[16]
ZHAO Z B, LIU H, XUE J Z, et al. Association between subjective autonomic dysfunction and fatigue in Parkinson's disease in southern Chinese[J]. Neurol Sci, 2021, 42(7): 2951-2954. DOI: 10.1007/s10072-021-05209-y.
[17]
GOLDSTEIN D S. Dysautonomia in Parkinson's disease: neurocardiological abnormalities[J]. Lancet Neurol, 2003, 2(11): 669-676. DOI: 10.1016/s1474-4422(03)00555-6.
[18]
MILAZZO V, STEFANO C D, VALLELONGA F, et al. Reverse blood pressure dipping as marker of dysautonomia in Parkinson disease[J/OL]. Parkinsonism Relat Disord, 2018, 56: 82-87 [2023-09-24]. https://pubmed.ncbi.nlm.nih.gov/30057156/. DOI: 10.1016/j.parkreldis.2018.06.032.
[19]
STEIGER M, JOST W, GRANDAS F, et al. Risk of valvular heart disease associated with the use of dopamine agonists in Parkinson's disease: a systematic review[J]. J Neural Transm, 2009, 116(2): 179-191. DOI: 10.1007/s00702-008-0179-4.
[20]
KIM B K, LIM Y H, LEE H T, et al. Non-dipper pattern is a determinant of the inappropriateness of left ventricular mass in essential hypertensive patients[J]. Korean Circ J, 2011, 41(4): 191-197. DOI: 10.4070/kcj.2011.41.4.191.
[21]
BARDUTZ H, SINGH J, REHMAN Z, et al. Parkinson's disease and the cardiac cycle: a rapid literature review and case series[J/OL]. Life, 2023, 13(4): 1003 [2023-09-24]. https://pubmed.ncbi.nlm.nih.gov/37109530/. DOI: 10.3390/life13041003.
[22]
KRAIGHER-KRAINER E, SHAH A M, GUPTA D K, et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction[J]. J Am Coll Cardiol, 2014, 63(5): 447-456. DOI: 10.1016/j.jacc.2013.09.052.
[23]
MAURER M S, KHOURY RUMBARGER L EL, KING D L. Ventricular volume and length in hypertensive diastolic heart failure[J]. J Am Soc Echocardiogr, 2005, 18(10): 1051-1057. DOI: 10.1016/j.echo.2005.03.003.
[24]
AMZULESCU M S, CRAENE M D, LANGET H, et al. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(6): 605-619. DOI: 10.1093/ehjci/jez041.
[25]
STEFANO C D, SOBRERO G, MILAZZO V, et al. Cardiac organ damage in patients with Parkinson's disease and reverse dipping[J]. J Hypertens, 2020, 38(2): 289-294. DOI: 10.1097/HJH.0000000000002249.
[26]
ÇANGA Y, EMRE A, YÜKSEL G A, et al. Assessment of atrial conduction times in patients with newly diagnosed Parkinson's disease[J/OL]. Parkinsons Dis, 2018, 2018: 2916905 [2023-09-24]. https://pubmed.ncbi.nlm.nih.gov/30123488/. DOI: 10.1155/2018/2916905.
[27]
PENG J P, ZHAO X D, ZHAO L, et al. Normal values of myocardial deformation assessed by cardiovascular magnetic resonance feature tracking in a healthy Chinese population: a multicenter study[J/OL]. Front Physiol, 2018, 9: 1181 [2023-09-24]. https://pubmed.ncbi.nlm.nih.gov/30233388/. DOI: 10.3389/fphys.2018.01181.
[28]
TANSEY M G, WALLINGS R L, HOUSER M C, et al. Inflammation and immune dysfunction in Parkinson disease[J]. Nat Rev Immunol, 2022, 22(11): 657-673. DOI: 10.1038/s41577-022-00684-6.
[29]
TRIST B G, HARE D J, DOUBLE K L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease[J/OL]. Aging Cell, 2019, 18(6): e13031 [2023-09-24]. https://pubmed.ncbi.nlm.nih.gov/31432604/. DOI: 10.1111/acel.13031.
[30]
MOSCOSO COSTA F, NG F S. Oxidative stress and atrial fibrillation - association or causation?[J]. Rev Port Cardiol, 2021, 40(1): 11-12. DOI: 10.1016/j.repc.2020.12.007.
[31]
AJOOLABADY A, NATTEL S, LIP G Y H, et al. Inflammasome signaling in atrial fibrillation: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2022, 79(23): 2349-2366. DOI: 10.1016/j.jacc.2022.03.379.
[32]
CEREJA F, ALVES M, FERREIRA J J, et al. Atrial fibrillation risk on Parkinson's disease-a systematic review and meta-analysis[J]. J Thromb Thrombolysis, 2023, 55(4): 747-750. DOI: 10.1007/s11239-023-02792-z.
[33]
PATHAN F, ZAINAL ABIDIN H A, VO Q H, et al. Left atrial strain: a multi-modality, multi-vendor comparison study[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(1): 102-110. DOI: 10.1093/ehjci/jez303.
[34]
TELLES F, NANAYAKKARA S, EVANS S, et al. Impaired left atrial strain predicts abnormal exercise haemodynamics in heart failure with preserved ejection fraction[J]. Eur J Heart Fail, 2019, 21(4): 495-505. DOI: 10.1002/ejhf.1399.
[35]
CAU R, BASSAREO P, SURI J S, et al. The emerging role of atrial strain assessed by cardiac MRI in different cardiovascular settings: an up-to-date review[J]. Eur Radiol, 2022, 32(7): 4384-4394. DOI: 10.1007/s00330-022-08598-6.
[36]
CAMELI M, LISI M, RIGHINI F M, et al. Usefulness of atrial deformation analysis to predict left atrial fibrosis and endocardial thickness in patients undergoing mitral valve operations for severe mitral regurgitation secondary to mitral valve prolapse[J]. Am J Cardiol, 2013, 111(4): 595-601. DOI: 10.1016/j.amjcard.2012.10.049.

PREV Prognostic value of myocardial signal intensity heterogeneity based on late gadolinium enhancement in cardiac magnetic resonance in patients with myocarditis
NEXT Diagnostic value of native T1 and ECV in myocardial amyloidosis: A Meta-analysis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn