Share:
Share this content in WeChat
X
Clinical Article
A MRI-Radiomics-based model predicts EGFR mutation status in brain metastases in lung cancer patients
LI Baoxun  PENG Yuqin  QIN Weifeng  XIAO Fang  LI Haojiang  CHEN Junwei  LI Jianing  HU Zhixuan  MAO Jiaji  SHEN Jun 

Cite this article as: LI B X, PENG Y Q, QIN W F, et al. A MRI-Radiomics-based model predicts EGFR mutation status in brain metastases in lung cancer patients[J]. Chin J Magn Reson Imaging, 2024, 15(3): 86-92. DOI:10.12015/issn.1674-8034.2024.03.015.


[Abstract] Objective To explore the value of a radiomics model based on T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (CE-T1WI) magnetic resonance imaging (MRI) in non-invasive preoperative prediction of epidermal growth factor receptor (EGFR) mutation status in brain metastases of lung cancer patients.Materials and Methods We retrospectively collected clinical and MRI data of all lung cancer patients who underwent surgical resection of brain metastases and EGFR gene testing at Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Sun Yat-sen University Cancer Center and Anhui Provincial Hospital from December 2016 to October 2021. A total of 103 patients (118 brain metastases) were included, with 80 patients (89 brain metastases) in the training set (Sun Yat-sen University Cancer Center and Anhui Provincial Hospital) and 23 patients (29 brain metastases) in the test set (Sun Yat-sen Memorial Hospital, Sun Yat-sen University). The enhanced edges of brain metastases were delineated on the CE-T1WI images to obtain the volume of interest (VOI), which was then copied to the registered T2WI images to obtain the T2WI-VOI of brain metastases. Radiomics features of brain metastases were extracted from these VOI using the PyRadiomics software, and feature selection was performed using mRMR and LASSO-logistics methods. A predictive model for EGFR mutation status was constructed, and the performance of the radiomics model in predicting EGFR mutations status was evaluated using the area under the receiver operating characteristic curve (AUC). The calibration curve and Hosmer-Lemeshow (HL) test were used to evaluate the calibration of the model, and decision curve analysis (DCA) was used to assess the clinical net benefit of the radiomics model in predicting EGFR mutation status.Results In the training set and test set, there were no statistically significant differences in age, sex, pathological type, number of brain metastases, and diameter of brain metastases between the EGFR mutation and wild-type groups in terms of clinical data and MRI features (P>0.05). A total of 3 190 radiomics features of brain metastases were extracted from the CE-T1WI and T2WI images. Finally, four radiomics features based on CE-T1WI and five radiomics features based on T2WI were selected, and a radiomics model for predicting EGFR mutation status was constructed using these features. The radiomics model showed good predictive performance with an AUC of 0.828, accuracy of 76.4%, sensitivity of 81.6%, and specificity of 70.0% in the training set and an AUC of 0.783, accuracy of 82.8%, sensitivity of 95.7%, and specificity of 33.3% in the test set. The calibration curves of the radiomics model in the training and test sets showed good consistency between the predicted probabilities and the actual probabilities of EGFR mutation status (HL>0.05). DCA demonstrated the clinical utility of the radiomics model within a threshold range of 13.8%-87.2%.Conclusions The radiomics model based on T2WI and CE-T1WI MRI can serve as an auxiliary tool for non-invasive preoperative prediction of EGFR mutation status in brain metastases of lung cancer patients.
[Keywords] lung cancer;brain metastases;epidermal growth factor receptor;radiomics;magnetic resonance imaging

LI Baoxun1   PENG Yuqin2   QIN Weifeng1   XIAO Fang3   LI Haojiang4   CHEN Junwei1   LI Jianing1   HU Zhixuan1   MAO Jiaji1   SHEN Jun1*  

1 Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China

2 Department of Radiology, Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei 516600, China

3 Department of Radiology, the First Affiliated Hospital of USTC, Anhui Provincial Hospital, Hefei 230036, China

4 Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China

Corresponding author: SHEN J, E-mail: shenjun@mail.sysu.edu.cn

Conflicts of interest   None.

Received  2023-11-18
Accepted  2024-02-27
DOI: 10.12015/issn.1674-8034.2024.03.015
Cite this article as: LI B X, PENG Y Q, QIN W F, et al. A MRI-Radiomics-based model predicts EGFR mutation status in brain metastases in lung cancer patients[J]. Chin J Magn Reson Imaging, 2024, 15(3): 86-92. DOI:10.12015/issn.1674-8034.2024.03.015.

[1]
LIN N U, LEE E Q, AOYAMA H, et al. Response assessment criteria for brain metastases: proposal from the RANO group[J/OL]. Lancet Oncol, 2015, 16(6): e270-e278 [2023-11-17]. https://pubmed.ncbi.nlm.nih.gov/26065612/. DOI: 10.1016/S1470-2045(15)70057-4.
[2]
SUH J H, KOTECHA R, CHAO S T, et al. Current approaches to the management of brain metastases[J]. Nat Rev Clin Oncol, 2020, 17(5): 279-299. DOI: 10.1038/s41571-019-0320-3.
[3]
LAMBA N, WEN P Y, AIZER A A. Epidemiology of brain metastases and leptomeningeal disease[J]. Neuro-oncology, 2021, 23(9): 1447-1456. DOI: 10.1093/neuonc/noab101.
[4]
PAGE S, MILNER-WATTS C, PERNA M, et al. Systemic treatment of brain metastases in non-small cell lung cancer[J/OL]. Eur J Cancer, 2020, 132: 187-198 [2023-11-17]. https://pubmed.ncbi.nlm.nih.gov/32380429/. DOI: 10.1016/j.ejca.2020.03.006.
[5]
CAGNEY D N, MARTIN A M, CATALANO P J, et al. Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: a population-based study[J]. Neuro Oncol, 2017, 19(11): 1511-1521. DOI: 10.1093/neuonc/nox077.
[6]
YANG J J, ZHOU C C, HUANG Y S, et al. Icotinib versus whole-brain irradiation in patients with EGFR-mutant non-small-cell lung cancer and multiple brain metastases (BRAIN): a multicentre, phase 3, open-label, parallel, randomised controlled trial[J]. Lancet Respir Med, 2017, 5(9): 707-716. DOI: 10.1016/S2213-2600(17)30262-X.
[7]
MOK T S, WU Y L, AHN M J, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer[J]. N Engl J Med, 2017, 376(7): 629-640. DOI: 10.1056/NEJMoa1612674.
[8]
ENDERS F, GEISENBERGER C, JUNGK C, et al. Prognostic factors and long-term survival in surgically treated brain metastases from non-small cell lung cancer[J/OL]. Clin Neurol Neurosurg, 2016, 142: 72-80 [2023-11-17]. https://pubmed.ncbi.nlm.nih.gov/26816105/. DOI: 10.1016/j.clineuro.2016.01.011.
[9]
Brain metastases[J/OL]. Nat Rev Dis Primers, 2019, 5: 6 [2023-11-17]. https://pubmed.ncbi.nlm.nih.gov/30655539/. DOI: 10.1038/s41572-019-0061-8.
[10]
CADRANEL J, MAUGUEN A, FALLER M, et al. Impact of systematic EGFR and KRAS mutation evaluation on progression-free survival and overall survival in patients with advanced non-small-cell lung cancer treated by erlotinib in a French prospective cohort (ERMETIC project: part 2)[J]. J Thorac Oncol, 2012, 7(10): 1490-1502. DOI: 10.1097/JTO.0b013e318265b2b5.
[11]
JIANG Y, LIN Y C, FU W H, et al. The impact of adjuvant EGFR-TKIs and 14-gene molecular assay on stage I non-small cell lung cancer with sensitive EGFR mutations[J/OL]. EClinicalMedicine, 2023, 64: 102205 [2023-11-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511786. DOI: 10.1016/j.eclinm.2023.102205.
[12]
REUNGWETWATTANA T, NAKAGAWA K, CHO B C, et al. CNS response to osimertinib versus standard epidermal growth factor receptor tyrosine kinase inhibitors in patients with untreated EGFR-mutated advanced non-small-cell lung cancer[J/OL]. J Clin Oncol, 2018: JCO2018783118 [2023-11-23]. https://ascopubs.org/doi/pdf/10.1200/JCO.2018.78.3118?role=tab. DOI: 10.1200/JCO.2018.78.3118.
[13]
WANG P L, LI Y P, LV D Q, et al. Mefatinib as first-line treatment of patients with advanced EGFR-mutant non-small-cell lung cancer: a phase Ib/II efficacy and biomarker study[J/OL]. Signal Transduct Target Ther, 2021, 6(1): 374 [2023-11-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8558340. DOI: 10.1038/s41392-021-00773-3.
[14]
PROESCHOLDT M A, SCHöDEL P, DOENITZ C, et al. The Management of Brain Metastases-Systematic Review of Neurosurgical Aspects[J/OL]. Cancers (Basel), 2021, 13(7): 1616 [2023-11-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036330. DOI: 10.3390/cancers13071616.
[15]
STEINDL A, YADAVALLI S, GRUBER K A, et al. Neurological symptom burden impacts survival prognosis in patients with newly diagnosed non-small cell lung cancer brain metastases[J]. Cancer, 2020, 126(19): 4341-4352. DOI: 10.1002/cncr.33085.
[16]
DANIELE L, CASSONI P, BACILLO E, et al. Epidermal growth factor receptor gene in primary tumor and metastatic sites from non-small cell lung cancer[J]. J Thorac Oncol, 2009, 4(6): 684-688. DOI: 10.1097/JTO.0b013e3181a52359.
[17]
GOW C H, CHANG Y L, HSU Y C, et al. Comparison of epidermal growth factor receptor mutations between primary and corresponding metastatic tumors in tyrosine kinase inhibitor-naive non-small-cell lung cancer[J]. Ann Oncol, 2009, 20(4): 696-702. DOI: 10.1093/annonc/mdn679.
[18]
MATSUMOTO S, TAKAHASHI K, IWAKAWA R, et al. Frequent EGFR mutations in brain metastases of lung adenocarcinoma[J]. Int J Cancer, 2006, 119(6): 1491-1494. DOI: 10.1002/ijc.21940.
[19]
SUI L Y, WANG J N, REN J L, et al. Radiogenomics models based on MRI of brain metastasis for predicting EGFR mutation status in lung adenocarcinoma[J]. J Clin Radiol, 2023, 42(1): 20-25. DOI: 10.13437/j.cnki.jcr.2023.01.033.
[20]
CHEN B T, JIN T H, YE N R, et al. Radiomic prediction of mutation status based on MR imaging of lung cancer brain metastases[J/OL]. Magn Reson Imaging, 2020, 69: 49-56 [2023-11-17]. https://pubmed.ncbi.nlm.nih.gov/32179095/. DOI: 10.1016/j.mri.2020.03.002.
[21]
WANG G Y, WANG B M, WANG Z, et al. Radiomics signature of brain metastasis: prediction of EGFR mutation status[J]. Eur Radiol, 2021, 31(7): 4538-4547. DOI: 10.1007/s00330-020-07614-x.
[22]
JUNG W S, PARK C H, HONG C K, et al. Diffusion-weighted imaging of brain metastasis from lung cancer: correlation of MRI parameters with the histologic type and gene mutation status[J]. AJNR Am J Neuroradiol, 2018, 39(2): 273-279. DOI: 10.3174/ajnr.A5516.
[23]
ISENSEE F, SCHELL M, PFLUEGER I, et al. Automated brain extraction of multisequence MRI using artificial neural networks[J]. Hum Brain Mapp, 2019, 40(17): 4952-4964. DOI: 10.1002/hbm.24750.
[24]
SHI Y K, WU S M, WANG K, et al. Efficacy and safety of rezivertinib (BPI-7711) in patients with locally advanced or metastatic/recurrent EGFR T790M-mutated NSCLC: a phase 2b study[J]. J Thorac Oncol, 2022, 17(11): 1306-1317. DOI: 10.1016/j.jtho.2022.08.015.
[25]
CHO B C, HAN J Y, KIM S W, et al. A Phase 1/2 Study of Lazertinib 240 Mg in Patients With Advanced EGFR T790M-Positive NSCLC After Previous EGFR Tyrosine Kinase Inhibitors[J]. J Thorac Oncol, 2022, 17(4): 558-567. DOI: 10.1016/j.jtho.2021.11.025.
[26]
ZHAO Y, LI S Y, YANG X, et al. Overall survival benefit of osimertinib and clinical value of upfront cranial local therapy in untreated EGFR-mutant nonsmall cell lung cancer with brain metastasis[J]. Int J Cancer, 2022, 150(8): 1318-1328. DOI: 10.1002/ijc.33904.
[27]
PAN K, CONCANNON K, LI J, et al. Emerging therapeutics and evolving assessment criteria for intracranial metastases in patients with oncogene-driven non-small-cell lung cancer[J]. Nat Rev Clin Oncol, 2023, 20(10): 716-732. DOI: 10.1038/s41571-023-00808-4.
[28]
YANG F, ZHANG W G, SHANG X L, et al. Comparison of the efficacy and safety of first-line treatments based on clinicopathological characteristics for patients with advanced epidermal growth factor receptor mutated non-small-cell lung cancer: a systematic review and network meta-analysis[J/OL]. Crit Rev Oncol Hematol, 2022, 177: 103760 [2023-11-23]. https://pubmed.ncbi.nlm.nih.gov/35870763/. DOI: 10.1016/j.critrevonc.2022.103760.
[29]
POPAT S, M-J AHN, EKMAN S, et al. Osimertinib for EGFR-Mutant Non-Small-Cell Lung Cancer Central Nervous System Metastases: Current Evidence and Future Perspectives on Therapeutic Strategies[J/OL]. Target Oncol, 2023, 18(1) [2023-11-23]. https://link.springer.com/article/10.1007/s11523-022-00941-7. DOI: 10.1007/s11523-022-00941-7.
[30]
LEE C C, SOON Y Y, TAN C L, et al. Discordance of epidermal growth factor receptor mutation between primary lung tumor and paired distant metastases in non-small cell lung cancer: A systematic review and meta-analysis[J/OL]. PLoS One, 2019, 14(6): e0218414 [2023-11-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6583965. DOI: 10.1371/journal.pone.0218414.
[31]
SONG S G, KIM S, KOH J, et al. Comparative analysis of the tumor immune-microenvironment of primary and brain metastases of non-small-cell lung cancer reveals organ-specific and EGFR mutation-dependent unique immune landscape[J]. Cancer Immunol Immunother, 2021, 70(7): 2035-2048. DOI: 10.1007/s00262-020-02840-0.

PREV Diagnostic value of native T1 and ECV in myocardial amyloidosis: A Meta-analysis
NEXT Radiomics based on combined machine learning models for prediction of the response to neoadjuvant chemotherapy in mass enhancement breast cancer using magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn