Share:
Share this content in WeChat
X
Clinical Article
Value of MRI radiomics in predicting molecular subtypes of invasive breast carcinoma of no special type
ZHANG Dingyi  HUANG Xiaohua  SHEN Mengyi  ZHANG Li  HE Xin 

Cite this article as: ZHANG D Y, HUANG X H, SHEN M Y, et al. Value of MRI radiomics in predicting molecular subtypes of invasive breast carcinoma of no special type[J]. Chin J Magn Reson Imaging, 2024, 15(3): 100-106. DOI:10.12015/issn.1674-8034.2024.03.017.


[Abstract] Objective To investigate the clinical value of MRI radiomics in predicting Luminal and non-Luminal subtypes of invasive breast carcinoma of no special type.Materials and Methods A total of 149 cases with pathologically confirmed invasive breast carcinoma of no special type from April 2021 to December 2022 were retrospectively collected according to the inclusion and exclusion criteria, and all of them underwent non-contrast MRI scanning and contrast-enhanced scanning before treatment. Clinical and pathological data of all enrolled patients were collected. Patients were classified into Luminal subtype (n=90) and non-luminal subtype (n=59) based on the expression of estrogen receptor (ER) and progesterone receptor (PR). They were divided into training group (n=104) and test group (n=45) in a ratio of 7∶3,randomly. Screened the optimal features of radiomics from the extracted data, and three prediction models were established based on the random forest method, namely DWI model, DCE model, and DWI combining DCE model. The prediction performance of the models was evaluated by receiver operating characteristic (ROC) curve and the area under the curve (AUC). The DeLong test was used to compare the prediction performance of different models.Results There were no significant differences in the clinicopathological features (age, ER status, PR status, menopausal status, lymph node metastasis) between Luminal and non-Luminal groups, training group and test group (P>0.05). The AUCs of DWI model, DCE model and joint model were 0.859, 0.839 and 0.903 in the training group. In the test group, the AUCs were 0.722, 0.798 and 0.821 respectively. The DeLong test showed that the prediction efficacy of the DCE model and the joint model in the training group were statistically significant (P=0.03), but there was no statistically significant difference in the prediction efficacy among the three models (P>0.05).Conclusions The model constructed based on MRI radiomics can better predict the luminal and non-luminal subtypes of invasive breast carcinoma of no special type, and can help the decision-making of clinical treatment options for invasive breast carcinoma of no special type.
[Keywords] breast cancer;magnetic resonance imaging;molecular subtype;radiomics;joint model

ZHANG Dingyi   HUANG Xiaohua*   SHEN Mengyi   ZHANG Li   HE Xin  

Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China

Corresponding author: HUANG X H, E-mail: 15082797553@163.com

Conflicts of interest   None.

Received  2023-09-07
Accepted  2024-02-23
DOI: 10.12015/issn.1674-8034.2024.03.017
Cite this article as: ZHANG D Y, HUANG X H, SHEN M Y, et al. Value of MRI radiomics in predicting molecular subtypes of invasive breast carcinoma of no special type[J]. Chin J Magn Reson Imaging, 2024, 15(3): 100-106. DOI:10.12015/issn.1674-8034.2024.03.017.

[1]
MA Y, LIU A D, O'CONNELL A M, et al. Contrast-enhanced cone beam breast CT features of breast cancers: correlation with immunohistochemical receptors and molecular subtypes[J]. Eur Radiol, 2021, 31(4): 2580-2589. DOI: 10.1007/s00330-020-07277-8.
[2]
ZHU X L, SHEN J, ZHANG H L, et al. A novel combined nomogram model for predicting the pathological complete response to neoadjuvant chemotherapy in invasive breast carcinoma of No specific type: real-world study[J/OL]. Front Oncol, 2022, 12: 916526 [2023-09-06]. https://pubmed.ncbi.nlm.nih.gov/35734603/. DOI: 10.3389/fonc.2022.916526.
[3]
HUANG T, FAN B, QIU Y Y, et al. Application of DCE-MRI radiomics signature analysis in differentiating molecular subtypes of luminal and non-luminal breast cancer[J/OL]. Front Med, 2023, 10: 1140514 [2023-09-06]. https://pubmed.ncbi.nlm.nih.gov/37181350/. DOI: 10.3389/fmed.2023.1140514.
[4]
SUN F, XU Y B, CUI G H, et al. Predict the Luminal type of invasive breast cancer using machine learning models based on ultrasono? graphic features[J]. J Pract Med, 2022, 38(18): 2279-2283. DOI: 10.3969/j.issn.1006-5725.2022.18.006.
[5]
SHI Z T, HE X Q, SHAO K, et al. Prediction of the expression of molecular subtypes in breast cancer based on diffusion kurtosis imaging and dynamic contrast enhancement imaging[J]. J Clin Radiol, 2023, 42(7): 1087-1092. DOI: 10.13437/j.cnki.jcr.2023.07.031.
[6]
FRAGOMENI S M, SCIALLIS A, JERUSS J S. Molecular subtypes and local-regional control of breast cancer[J]. Surg Oncol Clin N Am, 2018, 27(1): 95-120. DOI: 10.1016/j.soc.2017.08.005.
[7]
WANG L, LI Q, AUSHEV V N, et al. PAM50- and immunohistochemistry-based subtypes of breast cancer and their relationship with breast cancer mortality in a population-based study[J]. Breast Cancer, 2021, 28(6): 1235-1242. DOI: 10.1007/s12282-021-01261-w.
[8]
JIANG M, ZHANG D, TANG S C, et al. Deep learning with convolutional neural network in the assessment of breast cancer molecular subtypes based on US images: a multicenter retrospective study[J]. Eur Radiol, 2021, 31(6): 3673-3682. DOI: 10.1007/s00330-020-07544-8.
[9]
SUN R, HOU X W, LI X J, et al. Transfer learning strategy based on unsupervised learning and ensemble learning for breast cancer molecular subtype prediction using dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2022, 55(5): 1518-1534. DOI: 10.1002/jmri.27955.
[10]
JIANG L, YOU C, XIAO Y, et al. Radiogenomic analysis reveals tumor heterogeneity of triple-negative breast cancer[J/OL]. Cell Rep Med, 2022, 3(7): 100694 [2023-09-06]. https://pubmed.ncbi.nlm.nih.gov/35858585/. DOI: 10.1016/j.xcrm.2022.100694.
[11]
WITOWSKI J, HEACOCK L, REIG B, et al. Improving breast cancer diagnostics with deep learning for MRI[J/OL]. Sci Transl Med, 2022, 14(664): eabo4802 [2023-09-06]. https://pubmed.ncbi.nlm.nih.gov/36170446/. DOI: 10.1126/scitranslmed.abo4802.
[12]
WANG X Y, XIE T S, LUO J R, et al. Radiomics predicts the prognosis of patients with locally advanced breast cancer by reflecting the heterogeneity of tumor cells and the tumor microenvironment[J/OL]. Breast Cancer Res, 2022, 24(1): 20 [2023-09-06]. https://pubmed.ncbi.nlm.nih.gov/35292076/. DOI: 10.1186/s13058-022-01516-0.
[13]
LIU H, LIU X W, LIU G Y, et al. The value of apparent diffusion coefficient value in differentiating the Luminal-type and non-Luminal-type breast cancer and evaluating tumor cell proliferation activity[J]. Chin J Magn Reson Imag, 2023, 14(4): 51-56. DOI: 10.12015/issn.1674-8034.2023.04.010.
[14]
FENG S Q, YIN J D. Dynamic contrast-enhanced magnetic resonance imaging radiomics analysis based on intratumoral subregions for predicting luminal and nonluminal breast cancer[J]. Quant Imaging Med Surg, 2023, 13(10): 6735-6749. DOI: 10.21037/qims-22-1073.
[15]
HAMMOND M E, HAYES D F, DOWSETT M, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer[J]. J Clin Oncol, 2010, 28(16): 2784-2795. DOI: 10.1200/JCO.2009.25.6529.
[16]
The Society of Breast Cancer China Anti-Cancer Association. Guidelines and norms for diagnosis and treatment of breast cancer of China Anti-Cancer Association (2021 edition)[J]. China Oncol, 2021, 31(10): 954-1040. DOI: 10.19401/j.cnki.1007-3639.2021.10.013.
[17]
ZHAO Y, DENG X. Biological subtype of breast cancer and treatment as well as prognosis[J]. Chin J Pract Surg, 2015, 35(7): 704-708. DOI: 10.7504/CJPS.ISSN1005-2208.2015.07.04.
[18]
LAFCı O, CELEPLI P, SEHER ÖZTEKIN P, et al. DCE-MRI radiomics analysis in differentiating luminal A and luminal B breast cancer molecular subtypes[J]. Acad Radiol, 2023, 30(1): 22-29. DOI: 10.1016/j.acra.2022.04.004.
[19]
YANG Z Q, CHEN X F, ZHANG T H, et al. Quantitative multiparametric MRI as an imaging biomarker for the prediction of breast cancer receptor status and molecular subtypes[J/OL]. Front Oncol, 2021, 11: 628824 [2023-09-06]. https://pubmed.ncbi.nlm.nih.gov/34604024/. DOI: 10.3389/fonc.2021.628824.
[20]
JOHNSON K, ZACKRISSON S, ROSSO A, et al. Tumor characteristics and molecular subtypes in breast cancer screening with digital breast tomosynthesis: the malmö breast tomosynthesis screening trial[J]. Radiology, 2019, 293(2): 273-281. DOI: 10.1148/radiol.2019190132.
[21]
FAN M, ZHENG H Z, ZHENG S, et al. Mass detection and segmentation in digital breast tomosynthesis using 3D-mask region-based convolutional neural network: a comparative analysis[J/OL]. Front Mol Biosci, 2020, 7: 599333 [2023-09-06]. https://pubmed.ncbi.nlm.nih.gov/33263004/. DOI: 10.3389/fmolb.2020.599333.
[22]
MA M W, QIN G G, CHEN W G. Application and progress of radiomics in classifying breast cancer molecular subtype[J]. Int J Med Radiol, 2020, 43(4): 452-456. DOI: 10.19300/j.2020.Z18034.
[23]
LIU H X, ZHU Q Z, ZHAO X, et al. Differential analysis between luminal type and non-luminal type breast cancer by diffusion-weighted MRI histogram analysis[J]. J Med Imag, 2020, 30(8): 1398-1401.
[24]
GAO W B, YANG Q X, LI X H, et al. Synthetic MRI with quantitative mappings for identifying receptor status, proliferation rate, and molecular subtypes of breast cancer[J/OL]. Eur J Radiol, 2022, 148: 110168 [2023-09-06]. https://pubmed.ncbi.nlm.nih.gov/35078137/. DOI: 10.1016/j.ejrad.2022.110168.
[25]
SHENG W Y, XIA S L, WANG Y R, et al. Invasive ductal breast cancer molecular subtype prediction by MRI radiomic and clinical features based on machine learning[J/OL]. Front Oncol, 2022, 12: 964605 [2023-09-06]. https://pubmed.ncbi.nlm.nih.gov/36172153/. DOI: 10.3389/fonc.2022.964605.
[26]
SONG S E, CHO K R, CHO Y, et al. Machine learning with multiparametric breast MRI for prediction of Ki-67 and histologic grade in early-stage luminal breast cancer[J]. Eur Radiol, 2022, 32(2): 853-863. DOI: 10.1007/s00330-021-08127-x.
[27]
YUEN S, MONZAWA S, YANAI S, et al. The association between MRI findings and breast cancer subtypes: focused on the combination patterns on diffusion-weighted and T2-weighted images[J]. Breast Cancer, 2020, 27(5): 1029-1037. DOI: 10.1007/s12282-020-01105-z.
[28]
MONTEMEZZI S, CAMERA L, GIRI M G, et al. Is there a correlation between 3T multiparametric MRI and molecular subtypes of breast cancer?[J/OL]. Eur J Radiol, 2018, 108: 120-127 [2023-09-06]. https://pubmed.ncbi.nlm.nih.gov/30396643/. DOI: 10.1016/j.ejrad.2018.09.024.
[29]
CHATTERJI M, MERCADO C L, MOY L. Optimizing 1.5-Tesla and 3-Tesla dynamic contrast-enhanced magnetic resonance imaging of the breasts[J]. Magn Reson Imaging Clin N Am, 2010, 18(2): 207-224. DOI: 10.1016/j.mric.2010.02.011.
[30]
DAI T, SU T, WANG R, et al. Predictive value of DCE-MRI features of breast cancer on hormone receptor, HER-2 and triple negative breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(4): 57-67. DOI: 10.12015/issn.1674-8034.2023.04.011.
[31]
WANG S K, SUN D, GUO D J, et al. Value of radiomics based on dynamic contrast-enhanced magnetic resonance imaging in predicting luminal and non-luminal breast cancer[J]. J Chongqing Med Univ, 2019, 44(7): 933-937. DOI: 10.13406/j.cnki.cyxb.002175.
[32]
WANG W W, LV S Q, XUN J, et al. Comparison of diffusion kurtosis imaging and dynamic contrast enhanced MRI in prediction of prognostic factors and molecular subtypes in patients with breast cancer[J/OL]. Eur J Radiol, 2022, 154: 110392 [2023-09-06]. https://pubmed.ncbi.nlm.nih.gov/35679701/. DOI: 10.1016/j.ejrad.2022.110392.
[33]
NIU S X, JIANG W Y, ZHAO N N, et al. Intra- and peritumoral radiomics on assessment of breast cancer molecular subtypes based on mammography and MRI[J]. J Cancer Res Clin Oncol, 2022, 148(1): 97-106. DOI: 10.1007/s00432-021-03822-0.
[34]
QIN Y J, WU F, HU Q L, et al. Histogram analysis of multi-model high-resolution diffusion-weighted MRI in breast cancer: correlations with molecular prognostic factors and subtypes[J/OL]. Front Oncol, 2023, 13: 1139189 [2023-09-06]. https://pubmed.ncbi.nlm.nih.gov/37188173/. DOI: 10.3389/fonc.2023.1139189.
[35]
LI W, PING X J, LIU Y H, et al. Value of MRI imaging features in predicting molecular typing of breast cancer[J]. J Clin Radiol, 2021, 40(9): 1709-1714. DOI: 10.13437/j.cnki.jcr.2021.09.012.
[36]
CHEN Y S, SUN S J, YU X J, et al. 3.0 T MRI features of breast cancer in different molecular types[J]. Chin J Magn Reson Imag, 2021, 12(2): 24-28. DOI: 10.12015/issn.1674-8034.2021.02.006.

PREV Radiomics based on combined machine learning models for prediction of the response to neoadjuvant chemotherapy in mass enhancement breast cancer using magnetic resonance imaging
NEXT Risk prediction and prognostic evaluation of hepatocellular carcinoma CK19 expression based on LI-RADS v2018 and other MRI features
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn