Share:
Share this content in WeChat
X
Clinical Article
Risk prediction and prognostic evaluation of hepatocellular carcinoma CK19 expression based on LI-RADS v2018 and other MRI features
LU Mengtian  QU Qi  XU Lei  ZHANG Jiyun  LIU Maotong  JIANG Jifeng  ZHANG Tao  ZHANG Xueqin 

Cite this article as: LU M T, QU Q, XU L, et al. Risk prediction and prognostic evaluation of hepatocellular carcinoma CK19 expression based on LI-RADS v2018 and other MRI features[J]. Chin J Magn Reson Imaging, 2024, 15(3): 107-113, 121. DOI:10.12015/issn.1674-8034.2024.03.018.


[Abstract] Objective To investigate the value of the Liver Imaging Reporting and Data System version 2018 (LI-RADS v2018) in preoperative predicting the expression of cytokeratin 19 (CK19) and assessing postoperative prognosis in hepatocellular carcinoma (HCC).Matirials and Methods: Two hundred and twenty patients with pathologically-confirmed HCC were retrospectively included who underwent preoperative MRI examination, including 59 cases with CK19-positive expression and 161 cases with CK19-negative expression. All patients were divided into training and validation sets in a 7∶3 ratio, and the clinical, pathological, and imaging data of the patients were analyzed. Independent predictors for CK19 expression in HCC were determined by univariate- and multivariate logistic regression analysis and a nomogram scoring model was constructed. The diagnostic performance of the model was assessed using receiver operating characteristic (ROC) curve analysis. Calibration curves and decision curves were plotted to evaluate the calibration performance and clinical applicability of the model. Nomogram scores for patients were calculated and used for high and low risk stratification. The Kaplan-Meier survival curve was employed to compare the overall, early, and late recurrence-free survival rates among different subgroups.Results Corona enhancement (OR=3.432, P=0.045), rim arterial phase hyperenhancement (OR=32.073, P=0.017), targetoid diffusion restriction (OR=12.941, P=0.006), irregular tumor margin (OR=4.590, P=0.014), and relative enhancement ratio (RER) in the hepatobiliary phase (OR=0.014, P=0.023) were independent predictors for CK19 expression in HCC. The AUC of the prediction model in the training set and validation set were 0.884 (95% CI: 0.823-0.930) and 0.748 (95% CI: 0.625-0.846), respectively. The calibration curve and decision curve showed that the calibration performance and clinical applicability of the model were good. Significant differences were observed in overall recurrence-free survival rates between the CK19-positive and CK19-negative groups, as well as in overall, early and late recurrence free survival rates between high and low-risk groups (P<0.05).Conclusions Corona enhancement, rim arterial phase hyperenhancement, and targetoid diffusion restriction, combined with irregular tumor margin and enhancement quantitative parameter in hepatobiliary phase can achieve preoperative risk prediction of CK19 expression in HCC, which also aids in assessing HCC postoperative recurrence.
[Keywords] primary hepatocellular carcinoma;cytokeratin 19;prediction model;Liver Imaging Reporting and Data System;magnetic resonance imaging

LU Mengtian1, 2   QU Qi1, 2   XU Lei2   ZHANG Jiyun2   LIU Maotong2   JIANG Jifeng2   ZHANG Tao2   ZHANG Xueqin2*  

1 Nantong University, Nantong 226006, China

2 Department of Radiology, Nantong Third People's Hospital, Nantong 226006, China

Corresponding author: ZHANG X Q, E-mail: 13962981245@163.com

Conflicts of interest   None.

Received  2023-11-26
Accepted  2024-02-26
DOI: 10.12015/issn.1674-8034.2024.03.018
Cite this article as: LU M T, QU Q, XU L, et al. Risk prediction and prognostic evaluation of hepatocellular carcinoma CK19 expression based on LI-RADS v2018 and other MRI features[J]. Chin J Magn Reson Imaging, 2024, 15(3): 107-113, 121. DOI:10.12015/issn.1674-8034.2024.03.018.

[1]
VILLANUEVA A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380(15): 1450-1462. DOI: 10.1056/nejmra1713263.
[2]
COURI T, PILLAI A. Goals and targets for personalized therapy for HCC[J]. Hepatol Int, 2019, 13(2): 125-137. DOI: 10.1007/s12072-018-9919-1.
[3]
CHOI J H, THUNG S N. Advances in histological and molecular classification of hepatocellular carcinoma[J/OL]. Biomedicines, 2023, 11(9): 2582 [2024-02-21]. https://www.mdpi.com/2227-9059/11/9/2582. DOI: 10.3390/biomedicines11092582.
[4]
ZHUO J Y, LU D, TAN W Y, et al. CK19-positive hepatocellular carcinoma is a characteristic subtype[J]. J Cancer, 2020, 11(17): 5069-5077. DOI: 10.7150/jca.44697.
[5]
RHEE H, KIM H, PARK Y N. Clinico-radio-pathological and molecular features of hepatocellular carcinomas with keratin 19 expression[J]. Liver Cancer, 2020, 9(6): 663-681. DOI: 10.1159/000510522.
[6]
ZHENG X, YUAN C W, CUI X W, et al. Correlation between the expression profile of cytokeratin 19/glypican 3 and recurrence of hepatocellular carcinoma after interventional therapy[J]. Chin J Hepatol, 2020, 28(11): 936-941. DOI: 10.3760/cma.j.cn501113-20191227-00483.
[7]
QIN S D, ZHANG J, QI Y P, et al. Individual and joint influence of cytokeratin 19 and microvascular invasion on the prognosis of patients with hepatocellular carcinoma after hepatectomy[J/OL]. World J Surg Oncol, 2022, 20(1): 209 [2024-02-21]. https://wjso.biomedcentral.com/articles/10.1186/s12957-022-02632-z. DOI: 10.1186/s12957-022-02632-z.
[8]
KAWAI T, YASUCHIKA K, ISHII T, et al. Keratin 19, a cancer stem cell marker in human hepatocellular carcinoma[J]. Clin Cancer Res, 2015, 21(13): 3081-3091. DOI: 10.1158/1078-0432.CCR-14-1936.
[9]
ZHUO J Y, LU D, LIN Z Y, et al. The distinct responsiveness of cytokeratin 19-positive hepatocellular carcinoma to regorafenib[J/OL]. Cell Death Dis, 2021, 12(12): 1084 [2024-02-21]. https://www.nature.com/articles/s41419-021-04320-4. DOI: 10.1038/s41419-021-04320-4.
[10]
HUANG X L, LONG L L, WEI J Q, et al. Radiomics for diagnosis of dual-phenotype hepatocellular carcinoma using Gd-EOB-DTPA-enhanced MRI and patient prognosis[J]. J Cancer Res Clin Oncol, 2019, 145(12): 2995-3003. DOI: 10.1007/s00432-019-03062-3.
[11]
ELSAYES K M, KIELAR A Z, ELMOHR M M, et al. White paper of the Society of Abdominal Radiology hepatocellular carcinoma diagnosis disease-focused panel on LI-RADS v2018 for CT and MRI[J]. Abdom Radiol (NY), 2018, 43(10): 2625-2642. DOI: 10.1007/s00261-018-1744-4.
[12]
CHOI S Y, KIM S H, PARK C K, et al. Imaging features of gadoxetic acid-enhanced and diffusion-weighted MR imaging for identifying cytokeratin 19-positive hepatocellular carcinoma: A retrospective observational study[J]. Radiology, 2018, 286(3): 897-908. DOI: 10.1148/radiol.2017162846.
[13]
HU X X, WANG W T, YANG L, et al. MR features based on LI-RADS identify cytokeratin 19 status of hepatocellular carcinomas[J]. Eur J Radiol, 2019, 113: 7-14. DOI: 10.1016/j.ejrad.2019.01.036.
[14]
GAO Z L, SHU J J, CHEN Y, et al. Application value of magnetic resonance imaging targetoid enhancement combined with alpha-fetoprotein level in evaluating the expression of cytokeratin 19 in hepatocellular carcinoma[J]. Chin J Dig Surg, 2022, 21(7): 956-965. DOI: 10.3760/cma.j.cn115610-20220515-00276.
[15]
CHEN Y Y, CAI H S, YANG Y H, et al. Preoperative prediction of the expression of CK19 in hepatocellular carcinoma by Gd-EOB-DTPA enhanced MRI[J]. J Sun Yat Sen Univ Med Sci, 2019, 40(6): 866-874. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2019.0120.
[16]
CHENG H Y, HU R H, HSIAO C Y, et al. Viral status and treatment efficacy in recurrent hepatocellular carcinoma after primary resection[J]. J Gastrointest Surg, 2023, 27(8): 1594-1610. DOI: 10.1007/s11605-023-05691-z.
[17]
ZHANG Q, XING W T, ZHANG J, et al. Circulating tumor cells undergoing the epithelial-mesenchymal transition: influence on prognosis in cytokeratin 19-positive hepatocellular carcinoma[J]. Onco Targets Ther, 2021, 14: 1543-1552. DOI: 10.2147/OTT.S298576.
[18]
LIAVA C, SINAKOS E, PAPADOPOULOU E, et al. Liver Imaging Reporting and Data System criteria for the diagnosis of hepatocellular carcinoma in clinical practice: a pictorial minireview[J]. World J Gastroenterol, 2022, 28(32): 4540-4556. DOI: 10.3748/wjg.v28.i32.4540.
[19]
CHEN J, XIA C C, DUAN T, et al. Macrotrabecular-massive hepatocellular carcinoma: imaging identification and prediction based on gadoxetic acid-enhanced magnetic resonance imaging[J]. Eur Radiol, 2021, 31(10): 7696-7704. DOI: 10.1007/s00330-021-07898-7.
[20]
MIN J H, LEE M W, PARK H S, et al. Interobserver variability and diagnostic performance of gadoxetic acid-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma[J]. Radiology, 2020, 297(3): 573-581. DOI: 10.1148/radiol.2020201940.
[21]
CHEN J B, ZHOU J, KUANG S C, et al. Liver imaging reporting and data system category 5: MRI predictors of microvascular invasion and recurrence after hepatectomy for hepatocellular carcinoma[J]. AJR Am J Roentgenol, 2019, 213(4): 821-830. DOI: 10.2214/AJR.19.21168.
[22]
AOKI T, NISHIDA N, UESHIMA K, et al. Higher enhancement intrahepatic nodules on the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI as a poor responsive marker of anti-PD-1/PD-L1 monotherapy for unresectable hepatocellular carcinoma[J]. Liver Cancer, 2021, 10(6): 615-628. DOI: 10.1159/000518048.
[23]
CHERNYAK V, FOWLER K J, KAMAYA A, et al. Liver imaging reporting and data system (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients[J]. Radiology, 2018, 289(3): 816-830. DOI: 10.1148/radiol.2018181494.
[24]
ZHENG W J, XING Z, XIONG M L, et al. The value of gadobenate dimeglumine multi-phase enhanced MRI in predicting the expression of cytokeratin19 in hepatocellular carcinoma[J]. Chin J Radiol, 2021, 55(6): 644-649. DOI: 10.3760/cma.j.cn112149-20200428-00623.
[25]
TANG M M, ZHOU Q, HUANG M Q, et al. Nomogram development and validation to predict hepatocellular carcinoma tumor behavior by preoperative gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2021, 31(11): 8615-8627. DOI: 10.1007/s00330-021-07941-7.
[26]
LU M T, QU Q, XU L, et al. Prediction for aggressiveness and postoperative recurrence of hepatocellular carcinoma using gadoxetic acid-enhanced magnetic resonance imaging[J]. Acad Radiol, 2023, 30(5): 841-852. DOI: 10.1016/j.acra.2022.12.018.
[27]
XU L, JIA Z Z, ZHANG X Q, et al. The value of gadoxetic acid-enhanced MRI nomogram in predicting the positive expression of CK19 in hepatocellular carcinoma[J]. J Clin Radiol, 2022, 41(11): 2046-2051. DOI: 10.13437/j.cnki.jcr.2022.11.015.
[28]
LEE H S, KIM M J, AN C. How to utilize LR-M features of the LI-RADS to improve the diagnosis of combined hepatocellular-cholangiocarcinoma on gadoxetate-enhanced MRI?[J]. Eur Radiol, 2019, 29(5): 2408-2416. DOI: 10.1007/s00330-018-5893-1.
[29]
PARK S H, KIM B, KIM S, et al. Estimating postsurgical outcomes of patients with a single hepatocellular carcinoma using gadoxetic acid-enhanced MRI: risk scoring system development and validation[J]. Eur Radiol, 2023, 33(5): 3566-3579. DOI: 10.1007/s00330-023-09539-7.
[30]
YANG X, CHANG J, LI R L, et al. Quantitative assessment of hypovascular component in arterial phase to help the discrimination of combined hepatocellular-cholangiocarcinoma and hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2023, 10: 113-122. DOI: 10.2147/JHC.S390820.
[31]
FOWLER K J, BURGOYNE A, FRAUM T J, et al. Pathologic, molecular, and prognostic radiologic features of hepatocellular carcinoma[J]. Radiographics, 2021, 41(6): 1611-1631. DOI: 10.1148/rg.2021210009.
[32]
JEONG H T, KIM M J, KIM Y E, et al. MRI features of hepatocellular carcinoma expressing progenitor cell markers[J]. Liver Int, 2012, 32(3): 430-440. DOI: 10.1111/j.1478-3231.2011.02640.x.
[33]
MORISAKA H, MOTOSUGI U, ICHIKAWA S, et al. Uptake of gadoxetic acid in hepatobiliary phase magnetic resonance imaging and transporter expression in hypovascular hepatocellular nodules[J/OL]. Eur J Radiol, 2021, 138: 109669 [2024-02-21]. https://www.ejradiology.com/article/S0720-048X(21)00149-2/abstract. DOI: 10.1016/j.ejrad.2021.109669.
[34]
RONOT M, CHERNYAK V, BURGOYNE A, et al. Imaging to predict prognosis in hepatocellular carcinoma: current and future perspectives[J/OL]. Radiology, 2023, 307(3): e221429 [2024-02-21]. https://pubs.rsna.org/doi/10.1148/radiol.221429?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed. DOI: 10.1148/radiol.221429.
[35]
YANG F, WAN Y D, XU L, et al. MRI-radiomics prediction for cytokeratin 19-positive hepatocellular carcinoma: a multicenter study[J/OL]. Front Oncol, 2021, 11: 672126 [2024-02-21]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2021.672126/full. DOI: 10.3389/fonc.2021.672126.
[36]
CHEN Y D, CHEN J, YANG C T, et al. Preoperative prediction of cholangiocyte phenotype hepatocellular carcinoma on contrast-enhanced MRI and the prognostic implication after hepatectomy[J/OL]. Insights Imaging, 2023, 14(1): 190 [2024-02-21]. https://insightsimaging.springeropen.com/articles/10.1186/s13244-023-01539-x. DOI: 10.1186/s13244-023-01539-x.
[37]
KADI D A, YAMAMOTO M F, LERNER E C, et al. Imaging prognostication and tumor biology in hepatocellular carcinoma[J]. J Liver Cancer, 2023, 23(2): 284-299. DOI: 10.17998/jlc.2023.08.29.
[38]
MOON J Y, MIN J H, KIM Y K, et al. Prognosis after curative resection of single hepatocellular carcinoma with A focus on LI-RADS targetoid appearance on preoperative gadoxetic acid-enhanced MRI[J]. Korean J Radiol, 2021, 22(11): 1786-1796. DOI: 10.3348/kjr.2020.1428.

PREV Value of MRI radiomics in predicting molecular subtypes of invasive breast carcinoma of no special type
NEXT The value of multi-parametric MRI radiomics model in predicting lymph node metastasis of pancreatic ductal adenocarcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn