Share:
Share this content in WeChat
X
Clinical Article
The value of multi-parametric MRI radiomics model in predicting lymph node metastasis of pancreatic ductal adenocarcinoma
ZENG Piao'e  QU Chao  CUI Jingjing  XIU Dianrong  LIU Jianyu  YUAN Huishu 

Cite this article as: ZENG P E, QU C, CUI J J, et al. The value of multi-parametric MRI radiomics model in predicting lymph node metastasis of pancreatic ductal adenocarcinoma[J]. Chin J Magn Reson Imaging, 2024, 15(3): 114-121. DOI:10.12015/issn.1674-8034.2024.03.019.


[Abstract] Objective A multi-parametric MRI radiomics model was constructed by combining the radiomics features of conventional MRI and apparent diffusion coefficient (ADC) map to predict lymph node metastasis (LNM) in pancreatic ductal adenocarcinoma (PDAC), and the prediction performance was compared with the established conventional MRI radiomics model and clinical model, to explore the added value of ADC map radiomics.Methods and Materials A total of 218 patients with PDAC were randomly divided into a training cohort and a validation cohort at a ratio of 7∶3. Clinical and conventional imaging features were used to construct the clinical imaging model. Then the radiomics features were extracted based on conventional MRI images (T1WI, T2WI, arterial phase images and portal venous phase images) and ADC maps. Least absolute shrinkage and selection operator was used to select the most relevant features of LNM in the training cohort for model construction. Radiomics models based on conventional MRI images (represented as radiomics model 1) and radiomics models combined with conventional MRI images and ADC maps (represented as radiomics model 2) were constructed. The area under the curve (AUC) of receiver operator characteristic was used to evaluate the prediction performance of the models. DeLong validation was used to compare the difference of AUC values between models. The calibration curve was used to evaluate the accuracy of the model. The clinical value of the model was evaluated by decision curve analysis.Results The AUC values of clinical and radiographic model, radiomics model 1 and radiomics model 2 for preoperative prediction of LNM in the training and validation cohorts were 0.741 and 0.674, 0.818 and 0.702, 0.854 and 0.839, respectively. The AUC value of radiomics model 2 for preoperative prediction of LNM was significantly higher than that of the clinical and radiographic model (P=0.009 in the training cohort; P=0.023 in the validation cohort) and radiomics model 1 (P=0.044 in the training cohort; P=0.041 in the validation cohort). The prediction performance of radiomics model 1 was not significantly different from that of the clinical radiographic model (P=0.095 in the training cohort; P=0.759 in the validation cohort). The calibration curves of the three models showed good agreement between the predicted values and the actual values. Decision curve analysis curve showed that radiomics model 2 had a higher net benefit than radiomics model 1 and clinical imaging model.Conclusions The multi-parametric MRI radiomics model by combining conventional MRI and ADC map radiomics can improve the diagnostic efficiency of predicting LNM of PDAC, which is significantly better than the conventional MRI radiomics model and clinical-radiographic model.
[Keywords] pancreatic ductal adenocarcinoma;lymph node metastasis;radiomics;magnetic resonance imaging;apparent diffusion coefficient

ZENG Piao'e1   QU Chao2   CUI Jingjing3   XIU Dianrong2   LIU Jianyu1   YUAN Huishu1*  

1 Department of Radiology, Peking University Third Hospital, Beijing 100191, China

2 Department of General Surgery, Peking University Third Hospital, Beijing 100191, China

3 Department of Research and Development, United Imaging Intelligence (Beijing), Beijing 100094, China

Corresponding author: YUAN H S, E-mail: huishuy@bjmu.edu.cn

Conflicts of interest   None.

Received  2023-10-27
Accepted  2024-02-23
DOI: 10.12015/issn.1674-8034.2024.03.019
Cite this article as: ZENG P E, QU C, CUI J J, et al. The value of multi-parametric MRI radiomics model in predicting lymph node metastasis of pancreatic ductal adenocarcinoma[J]. Chin J Magn Reson Imaging, 2024, 15(3): 114-121. DOI:10.12015/issn.1674-8034.2024.03.019.

[1]
CHEN W, ZHENG R, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. DOI: 10.3322/caac.21338.
[2]
ZHENG Z J, WANG M J, TAN C L, et al. Prognostic impact of lymph node status in patients after total pancreatectomy for pancreatic ductal adenocarcinoma: a strobe-compliant study[J/OL]. Medicine, 2020, 99(8): e19327 [2024-02-05]. https://pubmed.ncbi.nlm.nih.gov/32080152/. DOI: 10.1097/MD.0000000000019327.
[3]
TEMPERO M A, MALAFA M P, AL-HAWARY M, et al. Pancreatic adenocarcinoma, version 2.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(4): 439-457. DOI: 10.6004/jnccn.2021.0017.
[4]
General Office of National Health Commission. Standard for diagnosis and treatment of pancreatic cancer (2022 edition)[J]. J Clin Hepatol, 2022, 38(5): 1006-1015. DOI: 10.3969/j.issn.1001-5256.2022.05.007.
[5]
SHIN J, SHIN S, LEE J H, et al. Lymph node size and its association with nodal metastasis in ductal adenocarcinoma of the pancreas[J]. J Pathol Transl Med, 2020, 54(5): 387-395. DOI: 10.4132/jptm.2020.06.23.
[6]
LE O, JAVADI S, BHOSALE P R, et al. CT features predictive of nodal positivity at surgery in pancreatic cancer patients following neoadjuvant therapy in the setting of dual energy CT[J]. Abdom Radiol, 2021, 46(6): 2620-2627. DOI: 10.1007/s00261-020-02917-5.
[7]
LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
[8]
PU N, CHEN Q D, GAN W, et al. Lymph node metastatic patterns and survival predictors based on tumor size in pancreatic ductal adenocarcinoma[J]. Adv Ther, 2021, 38(8): 4258-4270. DOI: 10.1007/s12325-021-01819-2.
[9]
WANG S Y, SHI H C, YANG F X, et al. The value of 18F-FDG PET/CT and carbohydrate antigen 19-9 in predicting lymph node micrometastases of pancreatic cancer[J]. Abdom Radiol, 2019, 44(12): 4057-4062. DOI: 10.1007/s00261-019-02248-0.
[10]
HUA J, CHEN X M, CHEN Y J, et al. Development and multicenter validation of a nomogram for preoperative prediction of lymph node positivity in pancreatic cancer (NeoPangram)[J]. Hepatobiliary Pancreat Dis Int, 2021, 20(2): 163-172. DOI: 10.1016/j.hbpd.2020.12.020.
[11]
LEE J H, HAN S S, HONG E K, et al. Predicting lymph node metastasis in pancreatobiliary cancer with magnetic resonance imaging: a prospective analysis[J]. Eur J Radiol, 2019, 116: 1-7. DOI: 10.1016/j.ejrad.2019.04.007.
[12]
WANG F, WANG Y X, ZHOU Y, et al. Apparent diffusion coefficient histogram analysis for assessing tumor staging and detection of lymph node metastasis in epithelial ovarian cancer: correlation with p53 and ki-67 expression[J]. Mol Imaging Biol, 2019, 21(4): 731-739. DOI: 10.1007/s11307-018-1295-7.
[13]
SHI Y J, LIU B N, LI X T, et al. Establishment of a multi-parameters MRI model for predicting small lymph nodes metastases (<10 mm) in patients with resected pancreatic ductal adenocarcinoma[J]. Abdom Radiol, 2022, 47(9): 3217-3228. DOI: 10.1007/s00261-021-03347-7.
[14]
BIAN Y, GUO S W, JIANG H, et al. Radiomics nomogram for the preoperative prediction of lymph node metastasis in pancreatic ductal adenocarcinoma[J/OL]. Cancer Imaging, 2022, 22(1): 4 [2024-02-05]. https://pubmed.ncbi.nlm.nih.gov/34991733/. DOI: 10.1186/s40644-021-00443-1.
[15]
GAO J H, HAN F, JIN Y Y, et al. A radiomics nomogram for the preoperative prediction of lymph node metastasis in pancreatic ductal adenocarcinoma[J/OL]. Front Oncol, 2020, 10: 1654 [2024-02-05]. https://pubmed.ncbi.nlm.nih.gov/32974205/. DOI: 10.3389/fonc.2020.01654.
[16]
LI K, YAO Q D, XIAO J J, et al. Contrast-enhanced CT radiomics for predicting lymph node metastasis in pancreatic ductal adenocarcinoma: a pilot study[J/OL]. Cancer Imaging, 2020, 20(1): 12 [2024-02-05]. https://pubmed.ncbi.nlm.nih.gov/32000852/. DOI: 10.1186/s40644-020-0288-3.
[17]
LIU P, GU Q B, HU X L, et al. Applying a radiomics-based strategy to preoperatively predict lymph node metastasis in the resectable pancreatic ductal adenocarcinoma[J]. J Xray Sci Technol, 2020, 28(6): 1113-1121. DOI: 10.3233/XST-200730.
[18]
JANG K M, KIM S H, KIM Y K, et al. Missed pancreatic ductal adenocarcinoma: assessment of early imaging findings on prediagnostic magnetic resonance imaging[J]. Eur J Radiol, 2015, 84(8): 1473-1479. DOI: 10.1016/j.ejrad.2015.05.012.
[19]
YANG L F, YANG J B, ZHOU X B, et al. Development of a radiomics nomogram based on the 2D and 3D CT features to predict the survival of non-small cell lung cancer patients[J]. Eur Radiol, 2019, 29(5): 2196-2206. DOI: 10.1007/s00330-018-5770-y.
[20]
SHI Z S, MA C L, HUANG X M, et al. Magnetic resonance imaging radiomics-based nomogram from primary tumor for pretreatment prediction of peripancreatic lymph node metastasis in pancreatic ductal adenocarcinoma: A multicenter study[J]. J Magn Reson Imaging, 2022, 55(3): 823-839. DOI: 10.1002/jmri.28048.
[21]
SHI L, WANG L, WU C Y, et al. Preoperative prediction of lymph node metastasis of pancreatic ductal adenocarcinoma based on a radiomics nomogram of dual-parametric MRI imaging[J/OL]. Front Oncol, 2022, 12: 927077 [2024-02-05]. https://pubmed.ncbi.nlm.nih.gov/35875061/. DOI: 10.3389/fonc.2022.927077.
[22]
LIU Z Y, HUANG X H, CHEN Y W, et al. Prediction of lymph node metastasis of pancreatic ductal adenocarcinoma based on radiomics model of T1WI arterial phase[J]. Chin J Magn Reson Imag, 2022, 13(8): 30-35. DOI: 10.12015/issn.1674-8034.2022.08.006.
[23]
ZENG P E, QU C, LIU J F, et al. Comparison of MRI and CT-based radiomics for preoperative prediction of lymph node metastasis in pancreatic ductal adenocarcinoma[J]. Acta Radiol, 2023, 64(7): 2221-2228. DOI: 10.1177/02841851221142552.
[24]
YU Y Y, ZHANG R, DONG R T, et al. Feasibility of an ADC-based radiomics model for predicting pelvic lymph node metastases in patients with stage IB-IIA cervical squamous cell carcinoma[J/OL]. Br J Radiol, 2019, 92(1097): 20180986 [2024-02-05]. https://pubmed.ncbi.nlm.nih.gov/30888846/. DOI: 10.1259/bjr.20180986.
[25]
JAJODIA A, GUPTA A, PROSCH H, et al. Combination of radiomics and machine learning with diffusion-weighted MR imaging for clinical outcome prognostication in cervical cancer[J]. Tomography, 2021, 7(3): 344-357. DOI: 10.3390/tomography7030031.
[26]
WU Q X, SHI D P, DOU S W, et al. Radiomics analysis of multiparametric MRI evaluates the pathological features of cervical squamous cell carcinoma[J]. J Magn Reson Imaging, 2019, 49(4): 1141-1148. DOI: 10.1002/jmri.26301.
[27]
XIAO M L, MA F H, LI Y, et al. Multiparametric MRI-based radiomics nomogram for predicting lymph node metastasis in early-stage cervical cancer[J]. J Magn Reson Imaging, 2020, 52(3): 885-896. DOI: 10.1002/jmri.27101.
[28]
HOU L N, ZHOU W, REN J L, et al. Radiomics analysis of multiparametric MRI for the preoperative prediction of lymph node metastasis in cervical cancer[J/OL]. Front Oncol, 2020, 10: 1393 [2024-02-05]. https://pubmed.ncbi.nlm.nih.gov/32974143/. DOI: 10.3389/fonc.2020.01393.
[29]
LI C L, YIN J D. Radiomics based on T2-weighted imaging and apparent diffusion coefficient images for preoperative evaluation of lymph node metastasis in rectal cancer patients[J/OL]. Front Oncol, 2021, 11: 671354 [2024-02-05]. https://pubmed.ncbi.nlm.nih.gov/34041033/. DOI: 10.3389/fonc.2021.671354.
[30]
LIU X, WANG X P, ZHANG Y F, et al. Preoperative prediction of pelvic lymph nodes metastasis in prostate cancer using an ADC-based radiomics model: comparison with clinical nomograms and PI-RADS assessment[J]. Abdom Radiol, 2022, 47(9): 3327-3337. DOI: 10.1007/s00261-022-03583-5.
[31]
LIU X, TIAN J Y, WU J Y, et al. Utility of diffusion weighted imaging-based radiomics nomogram to predict pelvic lymph nodes metastasis in prostate cancer[J/OL]. BMC Med Imaging, 2022, 22(1): 190 [2024-02-05]. https://pubmed.ncbi.nlm.nih.gov/36333664/. DOI: 10.1186/s12880-022-00905-3.
[32]
WANG T, GAO T T, YANG J B, et al. Preoperative prediction of pelvic lymph nodes metastasis in early-stage cervical cancer using radiomics nomogram developed based on T2-weighted MRI and diffusion-weighted imaging[J]. Eur J Radiol, 2019, 114: 128-135. DOI: 10.1016/j.ejrad.2019.01.003.

PREV Risk prediction and prognostic evaluation of hepatocellular carcinoma CK19 expression based on LI-RADS v2018 and other MRI features
NEXT Multiparametric MRI, MR-HSG and clinical characteristics of uterine factor infertility
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn