Share:
Share this content in WeChat
X
Experience Exchang
Application of neck imaging reporting and data systems in MRI diagnosis of early exclusive mucosal local recurrent nasopharyngeal carcinoma
WANG Zeyan  WU Leidi  ZHONG Zhu  WANG Xingrui  XIAO Xuehong  WANG Zhilong 

Cite this article as: WANG Z Y, WU L D, ZHONG Z, et al. Application of neck imaging reporting and data systems in MRI diagnosis of early exclusive mucosal local recurrent nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2024, 15(3): 170-176. DOI:10.12015/issn.1674-8034.2024.03.027.


[Abstract] Objective To evaluate the diagnostic value of the neck imaging reporting and data systems (NI-RADS) MRI in exclusive mucosal local recurrent nasopharyngeal carcinoma (EMLRNPC) and mucosal posttreatment changes (MPTC), and attempted to propose adding qualitative diffusion-weighted imaging (DWI) criteria for the focal mucosal abnormality in NI-RADS MRI lexicon.Materials and Methods From February 2015 to February 2023, totally 21 cases of EMLRNPC and 29 cases of MPTC confirmed by pathology or imaging follow-up were retrospectively enrolled. Two radiologists independently evaluated the MRI findings and assigned a NI-RADS MRI category in the first step, then reevaluated with the adding qualitative DWI criteria and assigned a modified NI-RADS MRI category in the second step. All images were reevaluated by the senior radiologist in the same steps after three months. Inter- and intra-reader agreements were assessed with Cohen's Kappa test. Receiver operating characteristic curves were generated to assess the diagnostic values of the two NI-RADS categories between EMLRNPC and MPTC. Area under the curve (AUC) was compared by DeLong's test.Results Inter- and intra-reader agreements were 0.69 and 0.88 for NI-RADS MRI categories, and 0.83 and 0.96 for modified NI-RADS MRI categories. In differential diagnosis of EMLRNPC and MPTC, the AUC, sensitivity, specificity of NI-RADS MRI were 0.845 [95% confidence interval (CI): 0.715-0.932], 100.0% (95% CI: 83.9%-100.0%), 69.0% (95% CI: 49.2%-84.7%), and of modified NI-RADS MRI were 0.966 (95% CI: 0.871-0.997), 100.0% (95% CI: 83.9%-100.0%), 93.1% (95% CI: 77.2%-99.2%), respectively. There was statistical difference between the AUCs of two categories (Z=2.985, P=0.003).Conclusions For both NI-RADS MRI and modified NI-RADS MRI which adding the qualitative DWI criteria, the differential diagnostic value of EMLRNPC and MPTC are great, while the consistency and diagnostic performance are stronger for the modified NI-RADS MRI.
[Keywords] nasopharyngeal carcinoma;local recurrence;magnetic resonance imaging;neck imaging reporting and data systems;diffusion-weighted imaging

WANG Zeyan   WU Leidi   ZHONG Zhu   WANG Xingrui   XIAO Xuehong   WANG Zhilong*  

Department of Radiology, Zhongshan City People's Hospital, Zhongshan 528403, China

Corresponding author: WANG Z L, E-mail: wangzhilonger@sina.com

Conflicts of interest   None.

Received  2023-08-04
Accepted  2024-02-26
DOI: 10.12015/issn.1674-8034.2024.03.027
Cite this article as: WANG Z Y, WU L D, ZHONG Z, et al. Application of neck imaging reporting and data systems in MRI diagnosis of early exclusive mucosal local recurrent nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2024, 15(3): 170-176. DOI:10.12015/issn.1674-8034.2024.03.027.

[1]
MAO Y P, TANG L L, CHEN L, et al. Prognostic factors and failure patterns in non-metastatic nasopharyngeal carcinoma after intensity-modulated radiotherapy[J/OL]. Chin J Cancer, 2016, 35(1): 103 [2023-08-03]. https://pubmed.ncbi.nlm.nih.gov/28031050/. DOI: 10.1186/s40880-016-0167-2.
[2]
MENG K, TEY J, HO F C H, et al. Utility of magnetic resonance imaging in determining treatment response and local recurrence in nasopharyngeal carcinoma treated curatively[J/OL]. BMC Cancer, 2020, 20(1): 193 [2023-08-03]. https://pubmed.ncbi.nlm.nih.gov/32143592/. DOI: 10.1186/s12885-020-6664-3.
[3]
WANG Z L, WANG X R, ZHONG Z, et al. MRI diagnosis of local recurrent nasopharyngeal carcinoma and a preliminary study of neck imaging reporting and data systems[J]. J Pract Radiol, 2022, 38(5): 717-721. DOI: 10.3969/j.issn.1002-1671.2022.05.006.
[4]
ZOU X, HAN F, MA W J, et al. Salvage endoscopic nasopharyngectomy and intensity-modulated radiotherapy versus conventional radiotherapy in treating locally recurrent nasopharyngeal carcinoma[J]. Head Neck, 2015, 37(8): 1108-1115. DOI: 10.1002/hed.23719.
[5]
PERRI F, DELLA VITTORIA SCARPATI G, CAPONIGRO F, et al. Management of recurrent nasopharyngeal carcinoma: current perspectives[J/OL]. Onco Targets Ther, 2019, 12: 1583-1591 [2023-08-03]. https://pubmed.ncbi.nlm.nih.gov/30881013/. DOI: 10.2147/OTT.S188148.
[6]
TANG L L, CHEN Y P, CHEN C B, et al. The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma[J]. Cancer Commun, 2021, 41(11): 1195-1227. DOI: 10.1002/cac2.12218.
[7]
PENG Z Y, WANG Y M, FAN R H, et al. Treatment of recurrent nasopharyngeal carcinoma: a sequential challenge[J/OL]. Cancers, 2022, 14(17): 4111 [2023-08-03]. https://pubmed.ncbi.nlm.nih.gov/36077648/. DOI: 10.3390/cancers14174111.
[8]
AILIANOU A, MUNDADA P, DE PERROT T, et al. MRI with DWI for the detection of posttreatment head and neck squamous cell carcinoma: why morphologic MRI criteria matter[J]. AJNR Am J Neuroradiol, 2018, 39(4): 748-755. DOI: 10.3174/ajnr.A5548.
[9]
HUANG W H, LIU J, ZHANG B, et al. Potential value of non-echo-planar diffusion-weighted imaging of the nasopharynx: a primary study for differential diagnosis between recurrent nasopharyngeal carcinoma and post-chemoradiation fibrosis[J]. Acta Radiol, 2019, 60(10): 1265-1272. DOI: 10.1177/0284185118822635.
[10]
COMORETTO M, BALESTRERI L, BORSATTI E, et al. Detection and restaging of residual and/or recurrent nasopharyngeal carcinoma after chemotherapy and radiation therapy: comparison of MR imaging and FDG PET/CT[J]. Radiology, 2008, 249(1): 203-211. DOI: 10.1148/radiol.2491071753.
[11]
MANENTI G, CICCIÒ C, SQUILLACI E, et al. Role of combined DWIBS/3D-CE-T1w whole-body MRI in tumor staging: comparison with PET-CT[J]. Eur J Radiol, 2012, 81(8): 1917-1925. DOI: 10.1016/j.ejrad.2011.08.005.
[12]
TSHERING VOGEL D W, ZBAEREN P, GERETSCHLAEGER A, et al. Diffusion-weighted MR imaging including bi-exponential fitting for the detection of recurrent or residual tumour after (chemo)radiotherapy for laryngeal and hypopharyngeal cancers[J]. Eur Radiol, 2013, 23(2): 562-569. DOI: 10.1007/s00330-012-2596-x.
[13]
BAUGNON K L. NI-RADS to predict residual or recurrent head and neck squamous cell carcinoma[J]. Neuroimaging Clin N Am, 2022, 32(1): 1-18. DOI: 10.1016/j.nic.2021.08.003.
[14]
AIKEN A H, RATH T J, ANZAI Y, et al. ACR neck imaging reporting and data systems (NI-RADS): AWhite paper of theACR NI-RADS committee[J]. J Am Coll Radiol, 2018, 15(8): 1097-1108. DOI: 10.1016/j.jacr.2018.05.006.
[15]
ELSHOLTZ F H J, RO S R, SHNAYIEN S, et al. Inter- and intrareader agreement of NI-RADS in the interpretation of surveillance contrast-enhanced CT after treatment of oral cavity and oropharyngeal squamous cell carcinoma[J]. AJNR Am J Neuroradiol, 2020, 41(5): 859-865. DOI: 10.3174/ajnr.A6529.
[16]
ELSHOLTZ F H J, ERXLEBEN C, BAUKNECHT H C, et al. Reliability of NI-RADS criteria in the interpretation of contrast-enhanced magnetic resonance imaging considering the potential role of diffusion-weighted imaging[J]. Eur Radiol, 2021, 31(8): 6295-6304. DOI: 10.1007/s00330-021-07693-4.
[17]
American College of Radiology Committee on NI-RADS™. NI-RADS MRI Category Descriptors, Imaging Findings, and Management 2021[EB/OL]. (2021-012-06) [2023-08-03]. https://www.acr.org/-/media/ACR/Files/RADS/NI-RADS/ACR-NI-RADS-MRI-Table.pdf.
[18]
ASHOUR M M, DARWISH E A F, FAHIEM R M, et al. MRI posttreatment surveillance for head and neck squamous cell carcinoma: proposed MR NI-RADS criteria[J]. AJNR Am J Neuroradiol, 2021, 42(6): 1123-1129. DOI: 10.3174/ajnr.A7058.
[19]
KING A D, WOO J K S, AI Q Y, et al. Early detection of cancer: evaluation of MR imaging grading systems in patients with suspected nasopharyngeal carcinoma[J]. AJNR Am J Neuroradiol, 2020, 41(3): 515-521. DOI: 10.3174/ajnr.A6444.
[20]
XU J F, WU X W, WANG W Q, et al. Value of diffusion-weighted magnetic resonance imaging on the follow-up of nasopharyngeal carcinoma after radiotherapy[J]. J Xray Sci Technol, 2014, 22(5): 605-612. DOI: 10.3233/XST-140448.
[21]
SATOH S, KITAZUME Y, OHDAMA S, et al. Can malignant and benign pulmonary nodules be differentiated with diffusion-weighted MRI?[J]. AJR Am J Roentgenol, 2008, 191(2): 464-470. DOI: 10.2214/AJR.07.3133.
[22]
Nasopharyngeal Cancer Professional Committee of China Anti Cancer Association, LI J G, CHEN X Z, et al. Expert consensus on the diagnosis of recurrent or metastatic nasopharyngeal carcinoma[J]. Chin J Radiat Oncol, 2018, 27(1): 7-15. DOI: 10.3760/cma.j.issn.1004-4221.2018.01.002.
[23]
BECKER M, ZAIDI H. Imaging in head and neck squamous cell carcinoma: the potential role of PET/MRI[J/OL]. Br J Radiol, 2014, 87(1036): 20130677 [2023-08-03]. https://pubmed.ncbi.nlm.nih.gov/24649835/. DOI: 10.1259/bjr.20130677.
[24]
VAID S, CHANDORKAR A, ATRE A, et al. Differentiating recurrent tumours from post-treatment changes in head and neck cancers: does diffusion-weighted MRI solve the eternal dilemma?[J]. Clin Radiol, 2017, 72(1): 74-83. DOI: 10.1016/j.crad.2016.09.019.
[25]
WANG C, LIU L D, LAI S L, et al. Diagnostic value of diffusion-weighted magnetic resonance imaging for local and skull base recurrence of nasopharyngeal carcinoma after radiotherapy[J/OL]. Medicine, 2018, 97(34): e11929 [2023-08-03]. https://pubmed.ncbi.nlm.nih.gov/30142809/. DOI: 10.1097/MD.0000000000011929.
[26]
BUNCH P M, MEEGALLA N T, ABUALRUZ A R, et al. Initial referring physician and radiologist experience with neck imaging reporting and data system[J]. Laryngoscope, 2022, 132(2): 349-355. DOI: 10.1002/lary.29765.
[27]
WANG Z L, WANG X R, WU L D, et al. MRI-based neck imaging reporting and data systems in diagnosis of extracavity local recurrent nasopharyngeal carcinoma and posttreatment changes[J]. Chin J Radiol, 2023, 57(6): 647-652. DOI: 10.3760/cma.j.cn112149-20220602-00484.
[28]
HSU D, CHOKSHI F H, HUDGINS P A, et al. Predictive value of first posttreatment imaging using standardized reporting in head and neck cancer[J]. Otolaryngol Head Neck Surg, 2019, 161(6): 978-985. DOI: 10.1177/0194599819865235.
[29]
KRIEGER D A, HUDGINS P A, NAYAK G K, et al. Initial performance of NI-RADS to predict residual or recurrent head and neck squamous cell carcinoma[J]. AJNR Am J Neuroradiol, 2017, 38(6): 1193-1199. DOI: 10.3174/ajnr.A5157.
[30]
ABDELAZIZ T T, ABDEL RAZK A A K, ASHOUR M M M, et al. Interreader reproducibility of the Neck Imaging Reporting and Data system (NI-RADS) lexicon for the detection of residual/recurrent disease in treated head and neck squamous cell carcinoma (HNSCC)[J/OL]. Cancer Imaging, 2020, 20(1): 61 [2023-08-03]. https://pubmed.ncbi.nlm.nih.gov/32811559/. DOI: 10.1186/s40644-020-00337-8.

PREV Preliminary study of 3D-APTw imaging in the evaluation of clinical scanning feasibility and image quality of primary liver cancer
NEXT Value of MR pharmacokinetic perfusion scan in differential diagnosis between idiopathic granulomatous mastitis and invasive ductal carcinoma appearing as segmental distribution enhancement
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn