Share:
Share this content in WeChat
X
Experience Exchang
The research based on clinical and MRI features for the risk factors of femoroacetabular impingement syndrome
ZENG Xiao  SHI Yijie  PENG Ruchen 

Cite this article as: ZENG X, SHI Y J, PENG R C. The research based on clinical and MRI features for the risk factors of femoroacetabular impingement syndrome[J]. Chin J Magn Reson Imaging, 2024, 15(3): 183-186, 205. DOI:10.12015/issn.1674-8034.2024.03.029.


[Abstract] Objective To explore the risk factors contributing to femoroacetabular impaction (FAI) syndrome based on MRI factors and clinical factors and evaluate the correlation of each risk factor.Materials and Methods Patients with FAI who underwent hip MRI examination between February 2022 and June 2023 in our hospital were retrospectively enrolled. Patients were divided into two groups: the FAI syndrome group and the asymptomatic FAI group, based on whether they presented with clinical symptoms or signs. After evaluating the demographic characteristics of clinical data and anatomical features of hip joints through MRI, univariate analysis was used to identify risk factors for FAI syndrome. Subsequently, multivariate regression analysis was employed to explore the correlation between each risk factor and symptomatic FAI, ultimately pinpointing independent risk factors.Results In univariate analysis, significant differences were observed in age, FAI classification, peritrochanteric muscle edema, and femoral neck bone marrow edema (P<0.05). The multivariate statistical results showed that age (P=0.012), FAI classification (P=0.022) and peritrochanteric muscle edema (P<0.001) were identified as the independent risk factors associated with FAI syndrome.Conclusions Age, FAI classification and peritrochanteric muscle edema are independent risk factors for FAI syndrome, which can provide help for clinical individualized treatment and influence clinicians' decision-making regarding patients' treatment plans.
[Keywords] femoroacetabular impingement syndrome;magnetic resonance imaging;signs and symptoms;risk factors;asymptomatic disease

ZENG Xiao   SHI Yijie   PENG Ruchen*  

Department of Radiology, Beijing Luhe Hoapital, Captital Medical University, Beijing 101199, China

Corresponding author: PENG R C, E-mail: pengruchen@ccmu.edu.cn

Conflicts of interest   None.

Received  2023-10-24
Accepted  2024-03-04
DOI: 10.12015/issn.1674-8034.2024.03.029
Cite this article as: ZENG X, SHI Y J, PENG R C. The research based on clinical and MRI features for the risk factors of femoroacetabular impingement syndrome[J]. Chin J Magn Reson Imaging, 2024, 15(3): 183-186, 205. DOI:10.12015/issn.1674-8034.2024.03.029.

[1]
TRIGG S D, SCHROEDER J D, HULSOPPLE C. Femoroacetabular impingement syndrome[J]. Curr Sports Med Rep, 2020, 19(9): 360-366. DOI: 10.1249/JSR.0000000000000748.
[2]
ZHU Y L, SU P, XU T H, et al. Conservative therapy versus arthroscopic surgery of femoroacetabular impingement syndrome (FAI): a systematic review and meta-analysis[J/OL]. J Orthop Surg Res, 2022, 17(1): 296 [2023-08-11]. https://josr-online.biomedcentral.com/articles/2010.1186/s13018-13022-03187-13011. DOI: 10.1186/s13018-022-03187-1.
[3]
SCHMARANZER F, KHETERPAL A B, BREDELLA M A. Best practices: hip femoroacetabular impingement[J]. AJR Am J Roentgenol, 2021, 216(3): 585-598. DOI: 10.2214/AJR.20.22783.
[4]
SMITH-PETERSEN M N. The classic: treatment of malum coxae senilis, old slipped upper femoral epiphysis, intrapelvic protrusion of the acetabulum, and coxa Plana by means of acetabuloplasty. 1936[J]. Clin Orthop Relat Res, 2009, 467(3): 608-615. DOI: 10.1007/s11999-008-0670-0.
[5]
PHILIPPI M T, KAHN T L, ADEYEMI T F, et al. Leg dominance as a risk factor for femoroacetabular impingement syndrome[J]. J Hip Preserv Surg, 2020, 7(1): 22-26. DOI: 10.1093/jhps/hnaa007.
[6]
ADAM G P, MEYER I V, SILVA T A E, et al. Parafoveal chondral lesion of the femoral head in patients with femoroacetabular impingement[J]. Radiol Bras, 2023, 56(4): 202-206. DOI: 10.1590/0100-3984.2023.0019.
[7]
TERRELL S L, OLSON G E, LYNCH J. Therapeutic exercise approaches to nonoperative and postoperative management of femoroacetabular impingement syndrome[J]. J Athl Train, 2021, 56(1): 31-45. DOI: 10.4085/1062-6050-0488.19.
[8]
VASSALOU E E, SPANAKIS K, TSIFOUNTOUDIS I P, et al. MR imaging of the hip: an update on bone marrow edema[J]. Semin Musculoskelet Radiol, 2019, 23(3): 276-288. DOI: 10.1055/s-0039-1677872.
[9]
FOREMAN S C, ZHANG A L, NEUMANN J, et al. Postoperative MRI findings and associated pain changes after arthroscopic surgery for femoroacetabular impingement[J]. AJR Am J Roentgenol, 2020, 214(1): 177-184. DOI: 10.2214/AJR.19.21421.
[10]
OWEN M M, GOHAL C, ANGILERI H S, et al. Sex-based differences in prevalence, outcomes, and complications of hip arthroscopy for femoroacetabular impingement: a systematic review and meta-analysis[J/OL]. Orthop J Sports Med, 2023, 11(8): 23259671231188332 [2023-09-14]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403993/. DOI: 10.1177/23259671231188332.
[11]
TAGLIERO A J, FOSTER M J, MELUGIN H P, et al. Inflammatory and immunologic contributions in femoroacetabular impingement syndrome[J]. J Am Acad Orthop Surg, 2023, 31(21): 1097-1102. DOI: 10.5435/JAAOS-D-22-01166.
[12]
MATAR H E, RAJPURA A, BOARD T N. Femoroacetabular impingement in young adults: assessment and management[J]. Br J Hosp Med, 2019, 80(10): 584-588. DOI: 10.12968/hmed.2019.80.10.584.
[13]
KIM Y J, NOVAIS E N. Diagnosis and treatment of femoroacetabular impingement in Legg-Calvé-Perthes disease[J]. J Pediatr Orthop, 2011, 31(2Suppl): S235-S240. DOI: 10.1097/BPO.0b013e3182260252.
[14]
GOSVIG K K, JACOBSEN S, SONNE-HOLM S, et al. Prevalence of malformations of the hip joint and their relationship to sex, groin pain, and risk of osteoarthritis: a population-based survey[J]. J Bone Joint Surg Am, 2010, 92(5): 1162-1169. DOI: 10.2106/JBJS.H.01674.
[15]
WYLES C C, NORAMBUENA G A, HOWE B M, et al. Cam deformities and limited hip range of motion are associated with early osteoarthritic changes in adolescent athletes: a prospective matched cohort study[J]. Am J Sports Med, 2017, 45(13): 3036-3043. DOI: 10.1177/0363546517719460.
[16]
SUN H, HUANG H J, MAMTIMIN M, et al. Hip gluteus medius tears are associated with lower femoral neck-shaft angles and higher acetabular center-edge angles[J]. Arthroscopy, 2022, 38(5): 1496-1505. DOI: 10.1016/j.arthro.2021.10.006.
[17]
ZHU M, MUSSON D, OLIVER M, et al. Modelling gluteus medius tendon degeneration and repair in a large animal model[J]. Arch Orthop Trauma Surg, 2022, 142(1): 1-12. DOI: 10.1007/s00402-020-03573-6.
[18]
TOMARU Y, KAMADA H, TSUKAGOSHI Y, et al. The relationship between gluteus medius and minimus muscle volumes and hip development in developmental dysplasia of the hip[J]. J Orthop Sci, 2022, 27(5): 1078-1081. DOI: 10.1016/j.jos.2021.06.020.
[19]
GABRIELLI A S, TISHERMAN R T, CURLEY A J, et al. Open ischiofemoral impingement decompression[J/OL]. Arthrosc Tech, 2022, 11(7): e1149-e1155 [2023-09-17]. https://europepmc.org/article/MED/35936857. DOI: 10.1016/j.eats.2022.02.024.
[20]
SUNIL KUMAR K H, RAWAL J, NAKANO N, et al. Pathogenesis and contemporary diagnoses for lateral hip pain: a scoping review[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(8): 2408-2416. DOI: 10.1007/s00167-020-06354-1.
[21]
KOLLMORGEN R. Editorial commentary: degeneration of acetabular cartilage of any degree is a predictor of worse outcome after hip arthroscopy for labral repair and femoroacetabular impingement syndrome: the greater the damage, the worse the outcome[J]. Arthroscopy, 2022, 38(12): 3159-3161. DOI: 10.1016/j.arthro.2022.07.003.
[22]
AITKEN H D, WESTERMANN R W, BARTSCHAT N I, et al. Chronically elevated contact stress exposure correlates with intra-articular cartilage degeneration in patients with concurrent acetabular dysplasia and femoroacetabular impingement[J]. J Orthop Res, 2022, 40(11): 2632-2645. DOI: 10.1002/jor.25285.
[23]
HOFMANN S. The painful bone marrow edema syndrome of the hip joint[J]. Wien Klin Wochenschr, 2005, 117(4): 111-120. DOI: 10.1007/s00508-005-0322-2.
[24]
HAYES C W, CONWAY W F, DANIEL W W. MR imaging of bone marrow edema pattern: transient osteoporosis, transient bone marrow edema syndrome, or osteonecrosis[J]. Radiographics, 1993, 13(5): 1001-1011. DOI: 10.1148/radiographics.13.5.8210586.
[25]
PANZER S, AUGAT P, ESCH U. CT assessment of herniation pits: prevalence, characteristics, and potential association with morphological predictors of femoroacetabular impingement[J]. Eur Radiol, 2008, 18(9): 1869-1875. DOI: 10.1007/s00330-008-0952-7.
[26]
PETTIT M H, HICKMAN S H M, MALVIYA A, et al. Development of machine-learning algorithms to predict attainment of minimal clinically important difference after hip arthroscopy for femoroacetabular impingement yield fair performance and limited clinical utility[J/OL]. Arthroscopy, 2023: S0749-S8063(23)00798-3 [2023-10-16]. https://www.clinicalkey.com/#!/content/playContent/2021-s2022.2020-S0749806323007983?returnurl=null&referrer=null. DOI: 10.1016/j.arthro.2023.09.023.
[27]
KURODA Y, SAITO M, ÇıNAR E N, et al. Patient-related risk factors associated with less favourable outcomes following hip arthroscopy[J]. Bone Joint J, 2020, 102-B(7): 822-831. DOI: 10.1302/0301-620X.102B7.BJJ-2020-0031.R1.
[28]
SOGBEIN O A, SHAH A, KAY J, et al. Predictors of outcomes after hip arthroscopic surgery for femoroacetabular impingement: a systematic review[J/OL]. Orthop J Sports Med, 2019, 7(6): 2325967119848982 [2023-10-14]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585257/. DOI: 10.1177/2325967119848982.

PREV Value of MR pharmacokinetic perfusion scan in differential diagnosis between idiopathic granulomatous mastitis and invasive ductal carcinoma appearing as segmental distribution enhancement
NEXT Epithelioid hemangioendothelioma involving both liver and lung: One case report
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn