Share:
Share this content in WeChat
X
Review
Research progress of multimodal MRI in deep brain stimulation therapy for Parkinson's disease
LIU Miaomiao  LIU Quanyuan  REN Qingfa  XU Donghao  LI Xianglin 

Cite this article as: LIU M M, LIU Q Y, REN Q F, et al. Research progress of multimodal MRI in deep brain stimulation therapy for Parkinson's disease[J]. Chin J Magn Reson Imaging, 2024, 15(3): 200-205. DOI:10.12015/issn.1674-8034.2024.03.033.


[Abstract] Parkinson's disease (PD), which is characterized by resting tremor, muscular tonus, bradykinesia, and postural balance abnormalities, is the second most prevalent neurodegenerative disease in middle-aged and older persons worldwide. Its incidence is expected to increase to double in the following three decades. As the negative effects of medicines become increasingly evident, deep brain stimulation (DBS) has gained popularity as a novel type of adjuvant therapy. Magnetic resonance imaging (MRI) can non-invasively provide information on the structure, function, and metabolism of brain tissues in vivo, which is of greater clinical significance for assessing the effects of DBS after treatment of PD and guiding therapy. Therefore, this article provides a review of the research progress of multimodal MRI, including structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), blood oxygenation level dependent-functional magnetic resonance imaging (BOLD-fMRI), susceptibility-weighted imaging (SWI), quantitative magnetic susceptibility mapping (QSM), and magnetic resonance spectroscopy (MRS) in the treatment of PD with DBS, with the aim of assisting the clinic in choosing efficient and safe treatment methods and correctly evaluating the therapeutic effects.
[Keywords] Parkinson's disease;magnetic resonance imaging;deep brain stimulation;brain structure;brain function

LIU Miaomiao1   LIU Quanyuan2   REN Qingfa2   XU Donghao1   LI Xianglin1*  

1 School of Medical Imaging, Binzhou Medical University, Yantai 264003, China

2 Department of Radiology, Binzhou Medical University Hospital, Binzhou 256600, China

Corresponding author: LI X L, E-mail: xlli@bzmc.edu.cn

Conflicts of interest   None.

Received  2023-12-05
Accepted  2024-02-05
DOI: 10.12015/issn.1674-8034.2024.03.033
Cite this article as: LIU M M, LIU Q Y, REN Q F, et al. Research progress of multimodal MRI in deep brain stimulation therapy for Parkinson's disease[J]. Chin J Magn Reson Imaging, 2024, 15(3): 200-205. DOI:10.12015/issn.1674-8034.2024.03.033.

[1]
MA J, TANG N, et al. Disease burden trend analysis and prediction of Parkinson's disease in China[J]. Chinese Journal of Prevention and Control of Chronic Diseases, 2022, 30(9): 649-654. DOI: 10.16386/j.cjpccd.issn.1004-6194.2022.09.003.
[2]
TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinson's disease[J]. Lancet Neurol, 2021, 20(5): 385-397. DOI: 10.1016/s1474-4422(21)00030-2.
[3]
DAY J O, MULLIN S. The genetics of Parkinson's disease and implications for clinical practice[J/OL]. Genes, 2021, 12(7): 1006 [2023-12-05]. https://doi.org/10.3390/genes12071006. DOI: 10.3390/genes12071006.
[4]
MISHRA A K, DIXIT A. Dopaminergic axons: Key recitalists in Parkinson's disease[J]. Neurochem Res, 2021, 47(2): 234-248. DOI: 10.1007/s11064-021-03464-1.
[5]
YE H, ROBAK L A, YU M, et al. Genetics and pathogenesis of Parkinson's syndrome[J]. Annu Rev Pathol, 2023, 18(1): 95-121. DOI: 10.1146/annurev-pathmechdis-031521-034145.
[6]
CHENG H C, ULANE C M, BURKE R E. Clinical progression in Parkinson disease and the neurobiology of axons[J]. Ann Neurol, 2010, 67(6): 715-725. DOI: 10.1002/ana.21995.
[7]
NAZIR A, LAWRENCE B J, GASSON N, et al. Activities of daily living, depression, and quality of life in Parkinson's disease[J/OL]. PLoS One, 2014, 9(7): e102294 [2023-12-05]. https://doi.org/10.1371/journal.pone.0102294. DOI: 10.1371/journal.pone.0102294.
[8]
TIZABI Y, GETACHEW B, ASCHNER M. Novel pharmacotherapies in Parkinson's disease[J]. Neurotox Res, 2021, 39(4): 1381-1390. DOI: 10.1007/s12640-021-00375-5.
[9]
HARIZ M, BLOMSTEDT P. Deep brain stimulation for Parkinson's disease[J]. J Intern Med, 2022, 292(5): 764-778. DOI: 10.1111/joim.13541.
[10]
SHEN D, CAO L, LING Y, et al. Bilateral globus pallidus interna deep brain stimulation in Parkinson's disease: Therapeutic effects and motor outcomes prediction in a short-term follow up[J/OL]. Front Hum Neurosci, 2023, 16: 1023917 [2023-12-05]. https://doi.org/10.3389/fnhum.2022.1023917, DOI: 10.3389/fnhum.2022.1023917.
[11]
SIDDIQI S H, KHOSRAVANI S, ROLSTON J D, et al. The future of brain circuit-targeted therapeutics[J/OL]. Neuropsychopharmacology, 2023 [2023-12-05]. https://doi.org/10.1038/s41386-023-01670-9. DOI: 10.1038/s41386-023-01670-9.
[12]
BOHNEN N I, YARNALL A J, WEIL R S, et al. Cholinergic system changes in Parkinson's disease: emerging therapeutic approaches[J]. Lancet Neurol, 2022, 21(4): 381-392. DOI: 10.1016/s1474-4422(21)00377-x.
[13]
ZHANG Y C, DING C W. Application of multimodal MRI combined with transcranial substantia nigra ultrasound in patients with different subtypes of Parkinson's disease[J]. Chin J CT & MRI, 2023, 21(8): 4-6. DOI: 10.3969/j.issn.1672-5131.2023.08.02.
[14]
TIAN Y T, LI C M, CHEN M. From researchto clinic: The huge potential about application of magnetic resonance imaging in neurodegenerative disease[J]. Chin J Magn Reson Imaging, 2023, 14(1): 1-5, 19. DOI: 10.12015/issn.1674-8034.2023.01.001.
[15]
GUEVARA C, BULATOVA K, BARKER G J, et al. Whole-brain atrophy rate in idiopathic Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy[J/OL]. Parkinsons Dis, 2016, 2016: 9631041 [2023-12-05]. https://doi.org/10.1155/2016/9631041. DOI: 10.1155/2016/9631041.
[16]
LIN C H, CHEN C M, LU M K, et al. VBM reveals brain volume differences between Parkinson's disease and essential tremor patients[J/OL]. Front Hum Neurosci, 2013, 7: 247 [2023-12-05]. https://doi.org/10.3389/fnhum.2013.00247. DOI: 10.3389/fnhum.2013.00247.
[17]
VACCA S, SURI J S, SABA L. SBM vs VBM for highlighting similarities and differences between chronotype and Parkinson's MRI scans: a preliminary analysis[J/OL]. Int J Neurosci, 2023: 1-10. DOI: 10.1080/00207454.2023.2292958.
[18]
SARASSO E, AGOSTA F, PIRAMIDE N, et al. Progression of grey and white matter brain damage in Parkinson's disease: a critical review of structural MRI literature[J]. J Neurol, 2020, 268(9): 3144-3179. DOI: 10.1007/s00415-020-09863-8.
[19]
KERN D S, UY D, RHOADES R, et al. Discrete changes in brain volume after deep brain stimulation in patients with Parkinson's disease[J]. J Neurol Neurosurg Psychiatry, 2020, 91(9): 928-937. DOI: 10.1136/jnnp-2019-322688.
[20]
SANKAR T, LI S X, OBUCHI T, et al. Structural brain changes following subthalamic nucleus deep brain stimulation in Parkinson's disease[J]. Mov Disord, 2016, 31(9): 1423-1425. DOI: 10.1002/mds.26707.
[21]
MUTHURAMAN M, DEUSCHL G, KOIRALA N, et al. Effects of DBS in parkinsonian patients depend on the structural integrity of frontal cortex[J/OL]. Sci Rep, 2017, 7(1): 43571 [2023-12-05]. https://doi.org/10.1038/srep43571. DOI: 10.1038/srep43571.
[22]
CARLSON J D, NEUMILLER J J, SWAIN L D W, et al. Postoperative delirium in Parkinson's disease patients following deep brain stimulation surgery[J]. J Clin Neurosci, 2014, 21(7): 1192-1195. DOI: 10.1016/j.jocn.2013.12.007.
[23]
LANGE M, ZECH N, SEEMANN M, et al. Anesthesiologic regimen and intraoperative delirium in deep brain stimulation surgery for Parkinson's disease[J]. J Neurol Sci, 2015, 355(1-2): 168-173. DOI: 10.1016/j.jns.2015.06.012.
[24]
RADZIUNAS A, DELTUVA V P, TAMASAUSKAS A, et al. Neuropsychiatric complications and neuroimaging characteristics after deep brain stimulation surgery for Parkinson's disease[J]. Brain Imaging Behav, 2018, 14(1): 62-71. DOI: 10.1007/s11682-018-9971-4.
[25]
ZHANG Y, BUROCK M A. Diffusion tensor imaging in Parkinson's disease and Parkinsonian syndrome: A systematic review[J/OL]. Front Neurol, 2020, 11: 531993 [2023-12-05]. https://doi.org/10.3389/fneur.2020.531993. DOI: 10.3389/fneur.2020.531993.
[26]
RASHIDI F, KHANMIRZAEI M H, HOSSEINZADEH F, et al. Cingulum and uncinate fasciculus microstructural abnormalities in Parkinson's disease: A systematic review of diffusion tensor imaging studies[J/OL]. Biology, 2023, 12(3): 475 [2023-12-05]. https://doi.org/10.3390/biology12030475. DOI: 10.3390/biology12030475.
[27]
SHIH Y C, TSENG W Y I, MONTASER-KOUHSARI L. Recent advances in using diffusion tensor imaging to study white matter alterations in Parkinson's disease: A mini review[J/OL]. Front Aging Neurosci, 2023, 14: 1018017 [2023-12-05]. https://doi.org/10.3389/fnagi.2022.1018017. DOI: 10.3389/fnagi.2022.1018017.
[28]
LI Y, HE N, ZHANG C, et al. Mapping motor pathways in Parkinson's Disease patients with subthalamic deep brain stimulator: A diffusion MRI tractography study[J]. Neurol Ther, 2022, 11(2): 659-677. DOI: 10.1007/s40120-022-00331-1.
[29]
ARÉVALO SÁENZ A, LÓPEZ MANZANARES L, NAVAS GARCÍA M, et al. Estimulación cerebral profunda en la enfermedad de Parkinson: análisis de la anisotropía fraccional cerebral en pacientes intervenidos mediante estimulación cerebral profunda[J]. Revista de Neurología, 2022, 74(4): 125-134. DOI: 10.33588/rn.7404.2021196.
[30]
CHIU S Y, TSUBOI T, HEGLAND K W, et al. Dysarthria and speech intelligibility following Parkinson's disease globus pallidus internus deep brain stimulation[J]. J Parkinsons Dis, 2020, 10(4): 1493-1502. DOI: 10.3233/jpd-202246.
[31]
PRENT N, POTTERS W V, BOON L I, et al. Distance to white matter tracts is associated with deep brain stimulation motor outcome in Parkinson's disease[J]. J Neurosurg, 2020, 133(2): 433-442. DOI: 10.3171/2019.5.Jns1952.
[32]
RAIMONDO L, OLIVEIRA Ĺ A F, HEIJ J, et al. Advances in resting state fMRI acquisitions for functional connectomics[J/OL]. NeuroImage, 2021, 243 [2023-12-05]. https://doi.org/10.1016/j.neuroimage.2021.118503. DOI: 10.1016/j.neuroimage.2021.118503.
[33]
LI Y, LIANG P, JIA X, et al. Abnormal regional homogeneity in Parkinson's disease: a resting state fMRI study[J/OL]. Clin Radiol, 2016, 71(1): e28-e34 [2023-12-05]. https://doi.org/10.1016/j.crad.2015.10.006. DOI: 10.1016/j.crad.2015.10.006.
[34]
PALMER W C, CHOLERTON B A, ZABETIAN C P, et al. Resting-state cerebello-cortical dysfunction in Parkinson's disease[J/OL]. Front Neurol, 2021, 11: 594213 [2023-12-05]. https://doi.org/10.3389/fneur.2020.594213. DOI: 10.3389/fneur.2020.594213.
[35]
YANG J, GOHEL S, VACHHA B. Current methods and new directions in resting state fMRI[J]. Clin Imaging, 2020, 65: 47-53. DOI: 10.1016/j.clinimag.2020.04.004.
[36]
HANSSEN H, STEINHARDT J, MÜNCHAU A, et al. Cerebello-striatal interaction mediates effects of subthalamic nucleus deep brain stimulation in Parkinson's disease[J]. Parkinsonism Relat Disord, 2019, 67: 99-104. DOI: 10.1016/j.parkreldis.2019.09.003.
[37]
HORN A, WENZEL G, IRMEN F, et al. Deep brain stimulation induced normalization of the human functional connectome in Parkinson's disease[J]. Brain, 2019, 142(10): 3129-3143. DOI: 10.1093/brain/awz239.
[38]
LI Z, LAI Y, LI J, et al. BOLD frequency–dependent alterations in resting-state functional connectivity by pallidal deep brain stimulation in patients with Parkinson's disease[J]. J Neurosurg, 2023: 139(5): 1354-1365. DOI: 10.3171/2023.1.Jns221858.
[39]
BOUTET A, MADHAVAN R, ELIAS G J B, et al. Predicting optimal deep brain stimulation parameters for Parkinson's disease using functional MRI and machine learning[J/OL]. Nat Commun, 2021, 12(1): 3043 [2023-12-05]. https://doi.org/10.1038/s41467-021-23311-9. DOI: 10.1038/s41467-021-23311-9.
[40]
HALLER S, HAACKE E M, THURNHER M M, et al. Susceptibility-weighted imaging: Technical essentials and clinical neurologic applications[J]. Radiology, 2021, 299(1): 3-26. DOI: 10.1148/radiol.2021203071.
[41]
KIM P H, LEE D H, SUH C H, et al. Diagnostic performance of loss of nigral hyperintensity on susceptibility-weighted imaging in Parkinsonism: an updated meta-analysis[J]. Eur Radiol, 2021, 31(8): 6342-6352. DOI: 10.1007/s00330-020-07627-6.
[42]
METTA V, CHUNG-FAYE G, BENAMER H TS, et al. Hiccups, hypersalivation, hallucinations in Parkinson's disease: New insights, mechanisms, pathophysiology, and management[J/OL]. J Pers Med, 2023, 13(5): 711 [2023-12-05]. https://doi.org/10.3390/jpm13050711. DOI: 10.3390/jpm13050711.
[43]
MATSUURA K, MAEDA M, SATOH M, et al. Low pulvinar intensity in susceptibility-weighted imaging may suggest cognitive worsening after deep brain stimulation therapy in patients with Parkinson's disease[J/OL]. Front Neurol, 2019, 10: 1158 [2023-12-05]. https://doi.org/10.3389/fneur.2019.01158. DOI: 10.3389/fneur.2019.01158.
[44]
GAO Y, WANG M Q, WEN R, et al. Application value of susceptibility-weighted imaging in deep brain stimulation of the globus pallidus interna[J]. Chinese Journal of Minimally Invasive Neurosurgery, 2020, 25(7): 306-309. DOI: 10.11850/j.issn.1009-122X.2020.07.006.
[45]
MOCHIZUKI H, CHOONG C J, BABA K. Parkinson's disease and iron[J]. J Neural Transm (Vienna), 2020, 127(2): 181-187. DOI: 10.1007/s00702-020-02149-3.
[46]
JIANG S, SHAO H, ABUDUREHEMAN·A, et al. Evaluation of brain iron deposition in early and advanced patients with Parkinson's disease using quantitative susceptibility mapping[J]. Chinese Computed Medical Imaging, 2022, 28(4): 337-341. DOI: 10.19627/j.cnki.cn31-1700/th.2022.04.009.
[47]
DENG X P, ZHAO N, WANG J. Locating the coordinates of globus pallidus internus using MR imaging-based method in Parkinson's disease surgery[J]. Chin J Magn Reson Imaging, 2018, 9(1): 74-80. DOI: 10.12015/issn.1674-8034.2018.01.016.
[48]
DIMOV A V, GUPTA A, KOPELL B H, et al. High-resolution QSM for functional and structural depiction of subthalamic nuclei in DBS presurgical mapping[J]. J Neurosurg, 2019, 131(2): 360-367. DOI: 10.3171/2018.3.Jns172145.
[49]
DIMOV A, PATEL W, YAO Y, et al. Iron concentration linked to structural connectivity in the subthalamic nucleus: implications for deep brain stimulation[J]. J Neurosurg, 2020, 132(1): 197-204. DOI: 10.3171/2018.8.Jns18531.
[50]
MATSUURA K, II Y, MAEDA M, et al. Pulvinar quantitative susceptibility mapping predicts visual hallucinations post‐deep brain stimulation in Parkinson's disease[J/OL]. Brain Behav, 2023, 13(11): e3263 [2023-12-05]. https://doi.org/10.1002/brb3.3263. DOI: 10.1002/brb3.3263.
[51]
TOCZYLOWSKA B, ZIEMINSKA E, MICHAŁOWSKA M, et al. Changes in the metabolic profiles of the serum and putamen in Parkinson's disease patients-In vitro and in vivo NMR spectroscopy studies[J/OL]. Brain Res, 2020, 1748: 147118 [2023-12-05]. https://doi.org/10.1016/j.brainres.2020.147118. DOI: 10.1016/j.brainres.2020.147118.
[52]
CHASSAIN C, CLADIERE A, TSOUTSOS C, et al. Glutamate cycle changes in the putamen of patients with de novo Parkinson's disease using 1H MRS[J]. Parkinsonism Relat Disord, 2022, 99: 65-72. DOI: 10.1016/j.parkreldis.2022.05.007.
[53]
KLIETZ M, BRONZLIK P, NÖSEL P, et al. Altered neurometabolic profile in early Parkinson's disease: A study with short echo-Time whole brain MR spectroscopic imaging[J/OL]. Front Neurol, 2019, 10: 777 [2023-12-05]. https://doi.org/10.3389/fneur.2019.00777. DOI: 10.3389/fneur.2019.00777.
[54]
LLUMIGUANO C, KOVACS N, USPRUNG Z, et al. 1H-MRS experiences after bilateral DBS of the STN in Parkinson's disease[J]. Parkinsonism Relat Disord, 2008, 14(3): 229-332. DOI: 10.1016/j.parkreldis.2007.08.009.
[55]
MAO J J, ZHANG X, et al. Opportunities and challenges of diffusion spectrum magnetic resonance imaging: Achievements and prospects over the past decade in China[J]. Chin J Magn Reson Imaging, 2022, 13(10): 37-45. DOI: 10.12015/issn.1674-8034.2022.10.005.

PREV Advances in brain functional imaging of abnormal emotional circuits associated with premenstrual dysphoric disorder
NEXT Research progress of resting state functional magnetic resonance imaging in epilepsy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn