Share:
Share this content in WeChat
X
Review
Research progress of resting state functional magnetic resonance imaging in epilepsy
GUO Jiahui  WU Qiong  GAO Yang  ZHAO He  XIE Shenghui  LI Bo  WANG Shaoyu  ZHANG Huapeng  WANG Yanan 

Cite this article as: GUO J H, WU Q, GAO Y, et al. Research progress of resting state functional magnetic resonance imaging in epilepsy[J]. Chin J Magn Reson Imaging, 2024, 15(3): 206-211. DOI:10.12015/issn.1674-8034.2024.03.034.


[Abstract] Epilepsy is a chronic neurological disease, its classification is wide, the mechanism is complex, has the characteristics of repeated seizures and unpredictable, which has caused a certain impact on the life of patients. Therefore, it is necessary to understand the pathophysiological mechanisms for the treatment of epilepsy and the improvement of patients' quality of life. Resting-state functional magnetic resonance imaging (rs-MRI) has become an effective method to investigate the changes of brain function in epilepsy. At present, the data analysis methods for epilepsy research based on rs-fMRI mainly include amplitude of low frequency fluctuation (ALFF), regional homogeneity (ReHo), function connection (FC) and graph theory analysis. This article provides a review of the application of various rs-fMRI analysis methods in epilepsy, aiming to provide imaging indicators for the pathophysiological mechanism, preoperative and precise clinical treatment of epilepsy.
[Keywords] epilepsy;magnetic resonance imaging;resting-state functional magnetic resonance imaging;amplitude of low frequency fluctuation;regional homogeneity;function connection;graph theory

GUO Jiahui1   WU Qiong1*   GAO Yang1   ZHAO He1   XIE Shenghui1   LI Bo1   WANG Shaoyu2   ZHANG Huapeng2   WANG Yanan1  

1 Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010030, China

2 SIEMENS Healthineers, Shanghai 201318, China

Corresponding author: WU Q, E-mail: 33360023@qq.com

Conflicts of interest   None.

Received  2023-10-07
Accepted  2024-03-04
DOI: 10.12015/issn.1674-8034.2024.03.034
Cite this article as: GUO J H, WU Q, GAO Y, et al. Research progress of resting state functional magnetic resonance imaging in epilepsy[J]. Chin J Magn Reson Imaging, 2024, 15(3): 206-211. DOI:10.12015/issn.1674-8034.2024.03.034.

[1]
FISHER R S, VAN EMDE BOAS W, BLUME W, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE)[J]. Epilepsia, 2005, 46(4): 470-472. DOI: 10.1111/j.0013-9580.2005.66104.x.
[2]
RINEY K, BOGACZ A, SOMERVILLE E, et al. International league against epilepsy classification and definition of epilepsy syndromes with onset at a variable age: position statement by the ILAE task force on nosology and definitions[J]. Epilepsia, 2022, 63(6): 1443-1474. DOI: 10.1111/epi.17240.
[3]
FALCO-WALTER J. Epilepsy-definition, classification, pathophysiology, and epidemiology[J]. Semin Neurol, 2020, 40(6): 617-623. DOI: 10.1055/s-0040-1718719.
[4]
MANFORD M. Recent advances in epilepsy[J]. J Neurol, 2017, 264(8): 1811-1824. DOI: 10.1007/s00415-017-8394-2.
[5]
ASADI-POOYA A A, FARAZDAGHI M. Clinical characteristics of MRI-negative temporal lobe epilepsy[J]. Acta Neurol Belg, 2022, 123(5): 1911-1916. DOI: 10.1007/s13760-022-02145-2.
[6]
ZHANG X, PAN W J, KEILHOLZ S. The relationship between local field potentials and the blood-oxygenation-level dependent MRI signal can be non-linear[J/OL]. Front Neurosci, 2019, 13: 1126 [2023-10-07]. https://doi.org/10.3389/fnins.2019.01126. DOI: 10.3389/fnins.2019.01126.
[7]
DUAN Y T, CHEN Z Q, HE M W, et al. MRI study of association between the SCN1A gene rs3812718 locus polymorphism and spontaneous brain activity in temporal lobe epilepsy[J]. Chin J Radiol, 2022, 56(5): 530-535. DOI: 10.3760/cma.j.cn112149-20210408-00344.
[8]
SAINBURG L E, LITTLE A A, JOHNSON G W, et al. Characterization of resting functional MRI activity alterations across epileptic foci and networks[J]. Cereb Cortex, 2022, 32(24): 5555-5568. DOI: 10.1093/cercor/bhac035.
[9]
SINGH T B, AISIKAER A, HE C, et al. The assessment of brain functional changes in the temporal lobe epilepsy patient with cognitive impairment by resting-state functional magnetic resonance imaging[J/OL]. J Clin Imaging Sci, 2020, 10: 50 [2023-10-07]. https://doi.org/10.25259/JCIS_55_2020. DOI: 10.25259/JCIS_55_2020.
[10]
ZHANG Z, ZHOU X, LIU J, et al. Aberrant executive control networks and default mode network in patients with right-sided temporal lobe epilepsy: a functional and effective connectivity study[J]. Int J Neurosci, 2020, 130(7): 683-693. DOI: 10.1080/00207454.2019.1702545.
[11]
ZHANG Z, ZHOU X, LIU J, et al. Longitudinal assessment of resting-state fMRI in temporal lobe epilepsy: A two-year follow-up study[J/OL]. Epilepsy Behav, 2020, 103(Pt A): 106858 [2023-10-07]. https://doi.org/10.1016/j.yebeh.2019.106858. DOI: 10.1016/j.yebeh.2019.106858.
[12]
QIN L, JIANG W, ZHENG J, et al. Alterations functional connectivity in temporal lobe epilepsy and their relationships with cognitive function: A longitudinal resting-state fMRI study[J/OL]. Front Neurol, 2020, 11: 625 [2023-10-07]. https://doi.org/10.3389/fneur.2020.00625. DOI: 10.3389/fneur.2020.00625.
[13]
BERNHARDT B C, FADAIE F, DE WAEL R VOS, et al. Preferential susceptibility of limbic cortices to microstructural damage in temporal lobe epilepsy: A quantitative T1 mapping study[J]. NeuroImage, 2018, 182: 294-303. DOI: 10.1016/j.neuroimage.2017.06.002.
[14]
CACIAGLI L, WANDSCHNEIDER B, XIAO F, et al. Abnormal hippocampal structure and function in juvenile myoclonic epilepsy and unaffected siblings[J]. Brain, 2019, 142(9): 2670-2687. DOI: 10.1093/brain/awz215.
[15]
YANG F, JIA W, KUKUN H, et al. A study of spontaneous brain activity on resting-state functional magnetic resonance imaging in adults with MRI-negative temporal lobe epilepsy[J]. Neuropsychiatr Dis Treat, 2022, 18: 1107-1116. DOI: 10.2147/NDT.S366189.
[16]
VETKAS A, FOMENKO A, GERMANN J, et al. Deep brain stimulation targets in epilepsy: Systematic review and meta‐analysis of anterior and centromedian thalamic nuclei and hippocampus[J]. Epilepsia, 2022, 63(3): 513-524. DOI: 10.1111/epi.17157.
[17]
YU Q Q, LIU G P, XU Q, et al. Uncoupling between functional connectivity density and amplitude of low frequency fluctuation in childhood absence epilepsy[J]. Chin J Magn Reson Imaging, 2022, 13(7): 75-79, 89. DOI: 10.12015/issn.1674-8034.2022.07.013.
[18]
WENG Y, LARIVIERE S, CACIAGLI L, et al. Macroscale and microcircuit dissociation of focal and generalized human epilepsies[J/OL]. Commun Biol, 2020, 3(1): 244 [2023-10-07]. https://doi.org/10.1038/s42003-020-0958-5. DOI: 10.1038/s42003-020-0958-5.
[19]
ZOU Q H, ZHU C Z, YANG Y, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. J Neurosci Methods, 2008, 172(1): 137-141. DOI: 10.1016/j.jneumeth.2008.04.012.
[20]
CHEN L C, LI X,F, SHEN L S. Self-limited focal epilepsy decreased regional brain activity in sensorimotor areas[J]. Acta Neurol Scand, 2021, 143(2): 188-194. DOI: 10.1111/ane.13350.
[21]
YAN Y, XIE G, ZHOU H, et al. Altered spontaneous brain activity in patients with childhood absence epilepsy: associations with treatment effects[J]. Neuroreport, 2020, 31(8): 613-618. DOI: 10.1097/WNR.0000000000001447.
[22]
LI X, CHEN Q, WANG Z, et al. Altered spontaneous brain activity as a potential imaging biomarker for generalized and focal to bilateral tonic-clonic seizures: A resting-state fMRI study[J/OL]. Epilepsy Behav, 2023, 140: 109100 [2023-10-07]. https://doi.org/10.1016/j.yebeh.2023.109100. DOI: 10.1016/j.yebeh.2023.109100.
[23]
ZANG Y, JIANG T, LU Y, et al. Regional homogeneity approach to fMRI data analysis[J]. NeuroImage, 2004, 22(1): 394-400. DOI: 10.1016/j.neuroimage.2003.12.030.
[24]
LIU G, LYU G, YANG N, et al. Abnormalities of diffusional kurtosis imaging and regional homogeneity in idiopathic generalized epilepsy with generalized tonic-clonic seizures[J]. Exp Ther Med, 2019, 17(1): 603-612. DOI: 10.3892/etm.2018.7018.
[25]
CHANG W, LV Z, PANG X, et al. The local neural markers of MRI in patients with temporal lobe epilepsy presenting ictal panic: A resting resting-state postictal fMRI study[J/OL]. Epilepsy Behav, 2022, 129: 108490 [2023-10-07]. https://doi.org/10.1016/j.yebeh.2021.108490. DOI: 10.1016/j.yebeh.2021.108490.
[26]
SCHUTTENBERG EM S J, ROSMARIN D H, et al. Forgiveness mediates the relationship between middle frontal gyrus volume and clinical symptoms in adolescents[J/OL]. Front Hum Neurosci, 2022, 16: 782893 [2023-10-07]. https://doi.org/10.3389/fnhum.2022.782893. DOI: 10.3389/fnhum.2022.782893.
[27]
ZHU J, XU C, ZHANG X, et al. A resting-state functional MRI study on the effect of vagal nerve stimulation on spontaneous regional brain activity in drug-resistant epilepsy patients[J/OL]. Behav Brain Res, 2020, 392: 112709 [2023-10-07]. https://doi.org/10.1016/j.bbr.2020.112709. DOI: 10.1016/j.bbr.2020.112709.
[28]
ZHU J, XU C, ZHANG X, et al. Altered amplitude of low-frequency fluctuations and regional homogeneity in drug-resistant epilepsy patients with vagal nerve stimulators under different current intensity[J]. CNS Neurosci Ther, 2021, 27(3): 320-329. DOI: 10.1111/cns.13449.
[29]
FORNITO A, ZALESKY A, BREAKSPEAR M. The connectomics of brain disorders[J]. Nat Rev Neurosci, 2015, 16(3): 159-172. DOI: 10.1038/nrn3901.
[30]
DAVIS K A, JIRSA V K, SCHEVON C A. Wheels within wheels: Theory and practice of epileptic networks[J/OL]. Epilepsy Curr, 2021, 21(4): 15357597211015663 [2023-10-07]. https://doi.org/10.1177/15357597211015663. DOI: 10.1177/15357597211015663.
[31]
LIU W, YUE Q, GONG Q, et al. Regional and remote connectivity patterns in focal extratemporal lobe epilepsy[J/OL]. Ann Transl Med, 2021, 9(14): 1128 [2023-10-07]. https://dx.doi.org/10.21037/atm-21-1374. DOI: 10.21037/atm-21-1374.
[32]
MA X Y, BAN C, ZHAO P F, et al. A fMRI study of hippocampal functional connectivity changes in benign childhood epilepsy with centrotemporal spikes[J]. Chin J Magn Reson Imaging, 2022, 13(2): 22-25. DOI: 10.12015/issn.1674-8034.2022.02.005.
[33]
PIZZANELLI C, PESARESI I, MILANO C, et al. Distinct limbic connectivity in left and right benign mesial temporal lobe epilepsy: Evidence from a resting state functional MRI study[J/OL]. Front Neurol, 2022, 13: 943660 [2023-10-07]. https://doi.org/10.3389/fneur.2022.943660. DOI: 10.3389/fneur.2022.943660.
[34]
AVIGAN P D, CAMMACK K, SHAPIRO M L. Flexible spatial learning requires both the dorsal and ventral hippocampus and their functional interactions with the prefrontal cortex[J]. Hippocampus, 2020, 30(7): 733-744. DOI: 10.1002/hipo.23198.
[35]
KIM H J, LEE J H, PARK C H, et al. Role of language-related functional connectivity in patients with benign childhood epilepsy with centrotemporal spikes[J]. J Clin Neurol, 2018, 14(1): 48-57. DOI: 10.3988/jcn.2018.14.1.48.
[36]
ROGER E, PICHAT C, TORLAY L, et al. Hubs disruption in mesial temporal lobe epilepsy. A resting-state fMRI study on a language-and-memory network[J/OL]. Hum Brain Mapp, 2020, 41(3): 779-796 [2023-10-07]. https://doi.org/10.1002/hbm.24839. DOI: 10.1002/hbm.24839.
[37]
QIN Y, LI S, YAO D, et al. Causality analysis to the abnormal subcortical-cortical connections in idiopathic-generalized epilepsy[J/OL]. Front Neurosci, 2022, 16: 925968 [2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/35844218/. DOI: 10.3389/fnins.2022.925968.
[38]
KRISTIN E, WILLS B, HERNÁN F J, et al. People with mesial temporal lobe epilepsy have altered thalamooccipital brain networks[J/OL]. Front Neurosci, 2022, 16: 925968 [2023-10-07]. https://doi.org/10.3389/fnins.2022.925968. DOI: 10.1016/j.yebeh.2020.107645.
[39]
ZENG Z, ZHANG T J. Study on resting-state fMRI of the central executive network in children with idiopathic generalized epilepsy[J]. Journal of Epileptology and Electroneurophysiology, 2022, 31(4): 203-208. DOI: 10.19984/j.cnki.1674-8972.2022.04.03
[40]
BISWAL B, YETKIN F Z, HAUGHTON V M, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[J]. Magn Reson Med, 1995, 34(4): 537-541. DOI: 10.1002/mrm.1910340409.
[41]
LI Y, QIN B, CHEN Q, et al. Impaired functional homotopy and topological properties within the default mode network of children with generalized tonic-clonic seizures: A resting-state fMRI study[J/OL]. Front Neurosci, 2022, 16: 833837 [2023-10-07]. https://doi.org/10.3389/fnins.2022.833837. DOI: 10.3389/fnins.2022.833837.
[42]
CHU Y, WU J, WANG D, et al. Altered voxel-mirrored homotopic connectivity in right temporal lobe epilepsy as measured using resting-state fMRI and support vector machine analyses [J/OL]. Front Psychiatry, 2022, 13: 958294 [2023-10-07]. https://doi.org/10.3389/fpsyt.2022.958294. DOI: 10.3389/fpsyt.2022.958294.
[43]
SHI K, PANG X, WANG Y, et al. Altered interhemispheric functional homotopy and connectivity in temporal lobe epilepsy based on fMRI and multivariate pattern analysis[J]. Neuroradiology, 2021, 63(11): 1873-1882. DOI: 10.1007/s00234-021-02706-x.
[44]
SONG C, ZHANG X, HAN S, et al. Static and temporal dynamic alteration of intrinsic brain activity in MRI-negative temporal lobe epilepsy[J]. Seizure, 2023, 108: 33-42. DOI: 10.1016/j.seizure.2023.04.004.
[45]
PANG L, FAN B, CHEN Z, et al. Disruption of cerebellar-cerebral functional connectivity in temporal lobe epilepsy and the connection to language and cognitive functions[J/OL]. Front Neurosci, 2022, 16: 871128 [2023-10-07]. https://doi.org/10.3389/fnins.2022.871128. DOI: 10.3389/fnins.2022.871128.
[46]
WANG K, XIE F, LIU C, et al. Shared functional network abnormality in patients with temporal lobe epilepsy and their siblings[J]. CNS Neurosci Ther, 2023, 29(4): 1109-1119. DOI: 10.1111/cns.14087.
[47]
HATLESTAD-HALL C, BRUNA R, ERICHSEN A, et al. The organization of functional neurocognitive networks in focal epilepsy correlates with domain-specific cognitive performance[J]. J Neurosci Res, 2021, 99(10): 2669-2687. DOI: 10.1002/jnr.24896.
[48]
ZHOU X, ZHANG Z, LIU J, et al. Aberrant topological organization of the default mode network in temporal lobe epilepsy revealed by graph-theoretical analysis[J/OL]. Neurosci Lett, 2019, 708: 134351 [2023-10-07]. https://doi.org/10.1016/j.neulet.2019.134351. DOI: 10.1016/j.neulet.2019.134351.
[49]
YU Y, CHU L, LIU C, et al. Alterations of white matter network in patients with left and right non-lesional temporal lobe epilepsy[J]. Eur Radiol, 2019, 29(12): 6750-6761. DOI: 10.1007/s00330-019-06295-5.
[50]
MA K, ZHANG X, SONG C, et al. Altered topological properties and their relationship to cognitive functions in unilateral temporal lobe epilepsy[J/OL]. Epilepsy Behav, 2023, 144: 109247 [2023-10-07]. https://doi.org/10.1016/j.yebeh.2023.109247. DOI: 10.1016/j.yebeh.2023.109247.
[51]
CHANG W, LIU J, NIE L, et al. The degree centrality and functional connectivity in patients with temporal lobe epilepsy presenting as ictal panic: A resting state fMRI study[J/OL]. Front Neurol, 2022, 13: 822253 [2023-10-07]. https://doi.org/10.3389/fneur.2022.822253. DOI: 10.3389/fneur.2022.822253.
[52]
AMIRI S, MEHVARI-HABIBABADI J, MOHAMMADI-MOBARAKEH N, et al. Graph theory application with functional connectivity to distinguish left from right temporal lobe epilepsy[J/OL]. Epilepsy Res, 2020, 167: 106449 [2023-10-07]. https://doi.org/10.1016/j.eplepsyres.2020.106449. DOI: 10.1016/j.eplepsyres.2020.106449.
[53]
TANG W Y. Study of brain functional network in intractable epilepsybased on rs-fMRI with graph theory analysis[D]. Zunyi: Zunyi Medical University, 2021. DOI: 10.27680/d.cnki.gzyyc.2021.000022.
[54]
MA L, LIU G, ZHANG P, et al. Altered cerebro-cerebellar effective connectivity in new-onset juvenile myoclonic epilepsy[J/OL]. Brain Sci, 2022, 12(12): 1658 [2023-10-07]. https://doi.org/10.3390/brainsci12121658. DOI: 10.3390/brainsci12121658.

PREV Research progress of multimodal MRI in deep brain stimulation therapy for Parkinson,s disease
NEXT Advances in the clinical application of MRI in the glymphatic system of the brain
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn