Share:
Share this content in WeChat
X
Review
Progress in deep learning based on magnetic resonance imaging for rectal cancer research
SHI Shengming  XIAO Lingqing  MA Jiaqi  LIU Han  Wu Yupeng  LI Xiaofu 

Cite this article as: SHI S M, XIAO L Q, MA J Q, et al. Progress in deep learning based on magnetic resonance imaging for rectal cancer research[J]. Chin J Magn Reson Imaging, 2024, 15(3): 218-222. DOI:10.12015/issn.1674-8034.2024.03.036.


[Abstract] Rectal cancer (RC) is a malignancy with a high incidence rate worldwide, posing significant challenges in its management and treatment. MRI is the conventional modality used to assess RC. However, both traditional MRI and functional MRI frequently fall short in providing sufficient information for the development of personalized treatment plans for RC patients due to their inherent limitations. With the rapid advancements in artificial intelligence within the medical field in recent years, deep learning technologies have demonstrated tremendous potential and broad prospects for applications in areas such as RC staging, treatment response evaluation, RC segmentation, and genetic typing. These advancements suggest that deep learning could pave new ways for enhancing the precision and personalization of treatment decisions in RC in the future. This article presents a comprehensive review on the application of MRI-based deep learning techniques in RC, aiming to assist in selecting the optimal treatment strategy for RC patients, thereby improving patient outcomes, and providing new insights and directions for future research endeavors.
[Keywords] rectal cancer;magnetic resonance imaging;deep learning;predicted performance

SHI Shengming1   XIAO Lingqing2   MA Jiaqi1   LIU Han1   Wu Yupeng1   LI Xiaofu1*  

1 Department of Magnetic resonance imaging diagnostic, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China

2 Medical Imaging Center, General Hospital, Beitun Hospital, 10th Division, Xinjiang Production and Construction Corps, Beitun 836099, China

Corresponding author: LI X F, E-mail: davin2004@163.com

Conflicts of interest   None.

Received  2023-12-04
Accepted  2024-02-05
DOI: 10.12015/issn.1674-8034.2024.03.036
Cite this article as: SHI S M, XIAO L Q, MA J Q, et al. Progress in deep learning based on magnetic resonance imaging for rectal cancer research[J]. Chin J Magn Reson Imaging, 2024, 15(3): 218-222. DOI:10.12015/issn.1674-8034.2024.03.036.

[1]
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
[2]
XU J, XUE K M, ZHANG K. Current status and future trends of clinical diagnoses via image-based deep learning[J]. Theranostics, 2019, 9(25): 7556-7565. DOI: 10.7150/thno.38065.
[3]
IIMA M. Perfusion-driven intravoxel incoherent motion (IVIM) MRI in oncology: applications, challenges, and future trends[J]. Magn Reson Med Sci, 2021, 20(2): 125-138. DOI: 10.2463/mrms.rev.2019-0124.
[4]
THRALL J H, LI X, LI Q Z, et al. Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success[J]. J Am Coll Radiol, 2018, 15(3Pt B): 504-508. DOI: 10.1016/j.jacr.2017.12.026.
[5]
HECHT J. Managing expectations of artificial intelligence[J]. Nature, 2018, 563(7733): S141-S143. DOI: 10.1038/d41586-018-07504-9.
[6]
KOHLI M, GEIS REthics, artificial intelligence, and radiology[J]. J Am Coll Radiol, 2018, 15(9): 1317-1319. DOI: 10.1016/j.jacr.2018.05.020.
[7]
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. DOI: 10.1126/science.1127647.
[8]
ZHOU S K, GREENSPAN H, DAVATZIKOS C, et al. A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises[J]. Proc IEEE Inst Electr Electron Eng, 2021, 109(5): 820-838. DOI: 10.1109/JPROC.2021.3054390.
[9]
LUNDERVOLD A S, LUNDERVOLD A. An overview of deep learning in medical imaging focusing on MRI[J]. Z Med Phys, 2019, 29(2): 102-127. DOI: 10.1016/j.zemedi.2018.11.002.
[10]
CAIXINHA M, NUNES S. Machine learning techniques in clinical vision sciences[J]. Curr Eye Res, 2017, 42(1): 1-15. DOI: 10.1080/02713683.2016.1175019.
[11]
CURRIE G, HEWIS J, BUSHONG S. Tomographic reconstruction: a nonmathematical overview[J]. J Med Imaging Radiat Sci, 2015, 46(4): 403-412. DOI: 10.1016/j.jmir.2015.07.007.
[12]
HOSNY A, PARMAR C, QUACKENBUSH J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510. DOI: 10.1038/s41568-018-0016-5.
[13]
NARTOWT B J, HART G R, ROFFMAN D A, et al. Scoring colorectal cancer risk with an artificial neural network based on self-reportable personal health data[J/OL]. PLoS One, 2019, 14(8): e0221421 [2024-01-21]. https://pubmed.ncbi.nlm.nih.gov/31437221. DOI: 10.1371/journal.pone.0221421.
[14]
YAMASHITA R, NISHIO M, DO R K G, et al. Convolutional neural networks: an overview and application in radiology[J]. Insights Imaging, 2018, 9(4): 611-629. DOI: 10.1007/s13244-018-0639-9.
[15]
HORVAT N, CARLOS TAVARES ROCHA C, CLEMENTE OLIVEIRA B, et al. MRI of rectal cancer: tumor staging, imaging techniques, and management[J]. Radiographics, 2019, 39(2): 367-387. DOI: 10.1148/rg.2019180114.
[16]
HARANGI B. Skin lesion classification with ensembles of deep convolutional neural networks[J]. J Biomed Inform, 2018, 86: 25-32. DOI: 10.1016/j.jbi.2018.08.006.
[17]
WU Q Y, LIU S L, SUN P, et al. Establishment and clinical application value of an automatic diagnosis platform for rectal cancer T-staging based on a deep neural network[J]. Chin Med J, 2021, 134(7): 821-828. DOI: 10.1097/CM9.0000000000001401.
[18]
WEI Y R, WANG H J, CHEN Z W, et al. Deep learning-based multiparametric MRI model for preoperative T-stage in rectal cancer[J]. J Magn Reson Imaging, 2024, 59(3): 1083-1092. DOI: 10.1002/jmri.28856.
[19]
WAN L J, HU J S, CHEN S, et al. Prediction of lymph node metastasis in stage T1-2 rectal cancers with MRI-based deep learning[J]. Eur Radiol, 2023, 33(5): 3638-3646. DOI: 10.1007/s00330-023-09450-1.
[20]
SMITH J J, STROMBOM P, CHOW O S, et al. Assessment of a watch-and-wait strategy for rectal cancer in patients with a complete response after neoadjuvant therapy[J/OL]. JAMA Oncol, 2019, 5(4): e185896 [2024-01-21]. https://pubmed.ncbi.nlm.nih.gov/30629084. DOI: 10.1001/jamaoncol.2018.5896.
[21]
FU C L, SHAO T T, HOU M, et al. Preoperative prediction of tumor deposits in rectal cancer with clinical-magnetic resonance deep learning-based radiomic models[J/OL]. Front Oncol, 2023, 13: 1078863 [2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/36890815. DOI: 10.3389/fonc.2023.1078863.
[22]
LIU X Y, ZHANG D F, LIU Z Y, et al. Deep learning radiomics-based prediction of distant metastasis in patients with locally advanced rectal cancer after neoadjuvant chemoradiotherapy: a multicentre study[J/OL]. EBioMedicine, 2021, 69: 103442 [2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/34157487. DOI: 10.1016/j.ebiom.2021.103442.
[23]
JIANG X F, ZHAO H Y, SALDANHA O L, et al. An MRI deep learning model predicts outcome in rectal cancer[J/OL]. Radiology, 2023, 307(5): e222223 [2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/37278629. DOI: 10.1148/radiol.222223.
[24]
JANG B S, LIM Y J, SONG C, et al. Image-based deep learning model for predicting pathological response in rectal cancer using post-chemoradiotherapy magnetic resonance imaging[J]. Radiother Oncol, 2021, 161: 183-190. DOI: 10.1016/j.radonc.2021.06.019.
[25]
LI L L, XU B, ZHUANG Z K, et al. Accurate tumor segmentation and treatment outcome prediction with DeepTOP[J/OL]. Radiother Oncol, 2023, 183: 109550 [2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/36813177. DOI: 10.1016/j.radonc.2023.109550.
[26]
ZHU H T, ZHANG X Y, SHI Y J, et al. The conversion of MRI data with multiple b-values into signature-like pictures to predict treatment response for rectal cancer[J]. J Magn Reson Imaging, 2022, 56(2): 562-569. DOI: 10.1002/jmri.28033.
[27]
ZHANG X Y, WANG L, ZHU H T, et al. Predicting rectal cancer response to neoadjuvant chemoradiotherapy using deep learning of diffusion kurtosis MRI[J]. Radiology, 2020, 296(1): 56-64. DOI: 10.1148/radiol.2020190936.
[28]
FU Y B, LEI Y, WANG T H, et al. A review of deep learning based methods for medical image multi-organ segmentation[J]. Phys Med, 2021, 85: 107-122. DOI: 10.1016/j.ejmp.2021.05.003.
[29]
DESILVIO T, ANTUNES J T, BERA K, et al. Region-specific deep learning models for accurate segmentation of rectal structures on post-chemoradiation T2w MRI: a multi-institutional, multi-reader study[J/OL]. Front Med, 2023, 10: 1149056 [2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/37250635. DOI: 10.3389/fmed.2023.1149056.
[30]
LI D A, CHU X H, CUI Y F, et al. Improved U-Net based on contour prediction for efficient segmentation of rectal cancer[J/OL]. Comput Methods Programs Biomed, 2022, 213: 106493 [2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/34749245. DOI: 10.1016/j.cmpb.2021.106493.
[31]
DOU M, CHEN Z B, TANG Y L, et al. Segmentation of rectal tumor from multi-parametric MRI images using an attention-based fusion network[J]. Med Biol Eng Comput, 2023, 61(9): 2379-2389. DOI: 10.1007/s11517-023-02828-9.
[32]
SCLAFANI F, WILSON S H, CUNNINGHAM D, et al. Analysis of KRAS, NRAS, BRAF, PIK3CA and TP53 mutations in a large prospective series of locally advanced rectal cancer patients[J]. Int J Cancer, 2020, 146(1): 94-102. DOI: 10.1002/ijc.32507.
[33]
ZHOU P G, GOFFREDO P, GINADER T, et al. Impact of KRAS status on tumor response and survival after neoadjuvant treatment of locally advanced rectal cancer[J]. J Surg Oncol, 2021, 123(1): 278-285. DOI: 10.1002/jso.26244.
[34]
BENSON A B, VENOOK A P, AL-HAWARY M M, et al. NCCN guidelines insights: colon cancer, version 2.2018[J]. J Natl Compr Canc Netw, 2018, 16(4): 359-369. DOI: 10.6004/jnccn.2018.0021.
[35]
YANG L, DONG D, FANG M J, et al. Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer?[J]. Eur Radiol, 2018, 28(5): 2058-2067. DOI: 10.1007/s00330-017-5146-8.
[36]
SONG K, ZHAO Z J, MA Y L, et al. A multitask dual-stream attention network for the identification of KRAS mutation in colorectal cancer[J]. Med Phys, 2022, 49(1): 254-270. DOI: 10.1002/mp.15361.
[37]
LIU H H, YIN H K, LI J N, et al. A deep learning model based on MRI and clinical factors facilitates noninvasive evaluation of KRAS mutation in rectal cancer[J]. J Magn Reson Imaging, 2022, 56(6): 1659-1668. DOI: 10.1002/jmri.28237.
[38]
SARGENT D J, MARSONI S, MONGES G, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer[J]. J Clin Oncol, 2010, 28(20): 3219-3226. DOI: 10.1200/JCO.2009.27.1825.
[39]
SINGH M P, RAI S, PANDEY A, et al. Molecular subtypes of colorectal cancer: Anemerging therapeutic opportunity for personalized medicine[J]. Genes Dis, 2021, 8(2): 133-145. DOI: 10.1016/j.gendis.2019.10.013.
[40]
ECHLE A, GRABSCH H I, QUIRKE P, et al. Clinical-grade detection of microsatellite instability in colorectal tumors by deep learning[J]. Gastroenterology, 2020, 159(4): 1406-1416. DOI: 10.1053/j.gastro.2020.06.021.
[41]
KATHER J N, PEARSON A T, HALAMA N, et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer[J]. Nat Med, 2019, 25(7): 1054-1056. DOI: 10.1038/s41591-019-0462-y.
[42]
BILAL M, RAZA S E A, AZAM A, et al. Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study[J/OL]. Lancet Digit Health, 2021, 3(12): e763-e772 [2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/34686474. DOI: 10.1016/S2589-7500(21)00180-1.
[43]
YAMASHITA R, LONG J, LONGACRE T, et al. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study[J]. Lancet Oncol, 2021, 22(1): 132-141. DOI: 10.1016/S1470-2045(20)30535-0.
[44]
GUO B W, LI X Y, YANG M M, et al. Predicting microsatellite instability and key biomarkers in colorectal cancer from H&E-stained images: achieving state-of-the-art predictive performance with fewer data using Swin Transformer[J]. J Pathol Clin Res, 2023, 9(3): 223-235. DOI: 10.1002/cjp2.312.
[45]
ZHANG W, YIN H K, HUANG Z X, et al. Development and validation of MRI-based deep learning models for prediction of microsatellite instability in rectal cancer[J]. Cancer Med, 2021, 10(12): 4164-4173. DOI: 10.1002/cam4.3957.

PREV Advances in the clinical application of MRI in the glymphatic system of the brain
NEXT Research progress of convolutional neural networks based on MRI in the diagnosis of meniscus injury
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn