Share:
Share this content in WeChat
X
Clinical Article
Correlation between cortical atrophy and cognitive function in pre-diabetes and type 2 diabetes mellitus
LI Xin  ZHANG Wen  LIU Jiani  FU Linqing  MIAO Yingwen  ZHANG Xin  CHNE Jiu  BI Yan  ZHANG Bing 

Cite this article as: LI X, ZHANG W, LIU J N, et al. Correlation between cortical atrophy and cognitive function in pre-diabetes and type 2 diabetes mellitus[J]. Chin J Magn Reson Imaging, 2024, 15(4): 9-14, 19. DOI:10.12015/issn.1674-8034.2024.04.002.


[Abstract] Objective To explore the change pattern of cerebral cortex in pre-diabetes (PDM) and type 2 diabetes mellitus (T2DM) and its relationship with cognitive function, and explore the early image markers of abnormal blood glucose metabolism.Materials and Methods This study included 48 normal controls (NC), 30 PDM subjects and 96 T2DM patients. Cognitive function test, clinical biochemical examination and high-resolution 3D-T1WI magnetic resonance were performed. The morphological analysis based on voxel and surface was carried out using CAT12 software, and the cortical structural parameters such as the volume of brain gray matter, cortical thickness and sulcus depth were obtained, and the differences among the three groups were compared. The threshold of P<0.05 and FWE correction were used for multiple comparison and correction.Results Compared to NC, the gray matter volume of right frontal inferior orbital gyrus and left postcentral gyrus of PDM subjects decreased, and the brain gray matter atrophy in T2DM patients, especially the right superior temporal gyrus, right frontal inferior orbital gyrus, the right middle temporal gyrus and the left postcentral gyrus (P<0.05, FWE corrected). Thickness of right prefrontal cortex decreased in T2DM patients (P<0.05, FWE corrected). In the subjects with abnormal blood glucose metabolism, the whole brain gray matter volume is negatively correlated with HOMA-IR (r=-0.227, P=0.012, uncorrected) and Trail Making Test A (r=-0.250, P=0.001, FDR corrected), and positively correlated with the number span-backward (r=0.267, P=0.003, FDR corrected). Cortical thickness was negatively correlated with hemoglobin A1c (r=-0.181, P=0.040, uncorrected) and postprandial blood glucose at 2 hours (r=-0.272, P=0.020, uncorrected), and positively correlated with postprandial insulin (r=0.236, P=0.010, uncorrected) and HOMA 2-B (r=0.207, P=0.022, uncorrected).Conclusions In this study, it was found that there was gray matter atrophy in pre-diabetes and global gray matter atrophy in T2DM patients, which was related to attention and working memory function. Therefore, cortical atrophy may be an early imaging marker of diabetes-related brain injury. This suggests that prediabetes subjects should also strictly control blood sugar, and early intervention is beneficial to prevent cognitive impairment and improve prognosis.
[Keywords] type 2 diabetes mellitus;pre-diabetes mellitus;magnetic resonance imaging;cortical atrophy;cognitive function

LI Xin1   ZHANG Wen1   LIU Jiani1   FU Linqing1   MIAO Yingwen2   ZHANG Xin1   CHNE Jiu1   BI Yan2   ZHANG Bing1*  

1 Department of Radiology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China

2 Department of endocrinology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China

Corresponding author: ZHANG B, E-mail: zhangbing_nanjing@nju.edu.cn

Conflicts of interest   None.

Received  2023-09-25
Accepted  2024-03-04
DOI: 10.12015/issn.1674-8034.2024.04.002
Cite this article as: LI X, ZHANG W, LIU J N, et al. Correlation between cortical atrophy and cognitive function in pre-diabetes and type 2 diabetes mellitus[J]. Chin J Magn Reson Imaging, 2024, 15(4): 9-14, 19. DOI:10.12015/issn.1674-8034.2024.04.002.

[1]
GARBER A J, HANDELSMAN Y, EINHORN D, et al. Diagnosis and management of prediabetes in the continuum of hyperglycemia: when do the risks of diabetes begin? A consensus statement from the American College of Endocrinology and the American Association of Clinical Endocrinologists[J]. Endocr Pract, 2008, 14(7): 933-946. DOI: 10.4158/ep.14.7.933.
[2]
WANG L, PENG W, ZHAO Z, et al. Prevalence and treatment of diabetes in China, 2013-2018[J]. JAMA, 2021, 326(24): 2498-2506. DOI: 10.1001/jama.2021.22208.
[3]
VAN SLOTEN T T, SEDAGHAT S, CARNETHON M R, et al. Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression[J]. Lancet Diabetes Endocrinol, 2020, 8(4): 325-336. DOI: 10.1016/S2213-8587(19)30405-X.
[4]
SRIKANTH V, SINCLAIR A J, HILL-BRIGGS F, et al. Type 2 diabetes and cognitive dysfunction-towards effective management of both comorbidities[J]. Lancet Diabetes Endocrinol, 2020, 8(6): 535-545. DOI: 10.1016/S2213-8587(20)30118-2.
[5]
MORAN C, BEARE R, WANG W, et al. Type 2 diabetes mellitus, brain atrophy, and cognitive decline[J/OL]. Neurology, 2019, 92(8): e823-e830 [2023-09-25]. https://pubmed.ncbi.nlm.nih.gov/30674592/. DOI: 10.1212/WNL.0000000000006955.
[6]
SHANG X, HILL E, LIU J, et al. Association of type 1 diabetes and age at diagnosis of type 2 diabetes with brain volume and risk of dementia in the UK Biobank: A prospective cohort study of community-dwelling participants[J/OL]. Diabet Med, 2023, 40(2): e14966 [2023-09-25]. https://pubmed.ncbi.nlm.nih.gov/36177651/. DOI: 10.1111/dme.14966.
[7]
JING J, ZHOU Y, PAN Y, et al. Reduced white matter microstructural integrity in prediabetes and diabetes: A population-based study[J/OL]. EBioMedicine, 2022, 82: 104144 [2023-09-25]. https://pubmed.ncbi.nlm.nih.gov/35810560/. DOI: 10.1016/j.ebiom.2022.104144.
[8]
VERGOOSSEN L W, SCHRAM M T, DE JONG J J, et al. White matter connectivity abnormalities in prediabetes and type 2 diabetes: The maastricht study[J]. Diabetes Care, 2020, 43(1): 201-208. DOI: 10.2337/dc19-0762.
[9]
ZHUO Y, FANG F, LU L, et al. White matter impairment in type 2 diabetes mellitus with and without microvascular disease[J/OL]. Neuroimage Clin, 2019, 24: 101945 [2023-09-25]. https://pubmed.ncbi.nlm.nih.gov/31374399/. DOI: 10.1016/j.nicl.2019.101945.
[10]
YAO L, YANG C, ZHANG W, et al. A multimodal meta-analysis of regional structural and functional brain alterations in type 2 diabetes[J/OL]. Front Neuroendocrinol, 2021, 62: 100915 [2023-09-25]. https://pubmed.ncbi.nlm.nih.gov/33862036/. DOI: 10.1016/j.yfrne.2021.100915.
[11]
CHAU A C M, SMITH A E, HORDACRE B, et al. A scoping review of resting-state brain functional alterations in Type 2 diabetes[J/OL]. Front Neuroendocrinol, 2022, 65: 100970 [2023-09-25]. https://pubmed.ncbi.nlm.nih.gov/34922997/. DOI: 10.1016/j.yfrne.2021.100970.
[12]
ZHANG Y, ZHANG X, ZHANG J, et al. Gray matter volume abnormalities in type 2 diabetes mellitus with and without mild cognitive impairment[J]. Neurosci Lett, 2014, 562: 1-6. DOI: 10.1016/j.neulet.2014.01.006.
[13]
GARFIELD V, FARMAKI A E, EASTWOOD S V, et al. HbA1c and brain health across the entire glycaemic spectrum[J]. Diabetes Obes Metab, 2021, 23(5): 1140-1149. DOI: 10.1111/dom.14321.
[14]
FURLANO J A, HORST B R, NAGAMATSU L S. Brain deficits in prediabetic adults: A systematic review[J]. J Neurosci Res, 2021, 99(7): 1725-1743. DOI: 10.1002/jnr.24830.
[15]
JING J, LIU C, ZHU W, et al. Increased resting-state functional connectivity as a compensatory mechanism for reduced brain volume in prediabetes and type 2 diabetes[J]. Diabetes Care, 2023, 46(4): 819-827. DOI: 10.2337/dc22-1998.
[16]
SCHNEIDER A L C, SELVIN E, SHARRETT A R, et al. Diabetes, prediabetes, and brain volumes and subclinical cerebrovascular disease on MRI: The atherosclerosis risk in communities neurocognitive study (ARIC-NCS)[J]. Diabetes Care, 2017, 40(11): 1514-1521. DOI: 10.2337/dc17-1185.
[17]
TAKAYANAGI Y, SASABAYASHI D, TAKAHASHI T, et al. Reduced cortical thickness in schizophrenia and schizotypal disorder[J]. Schizophr Bull, 2020, 46(2): 387-394. DOI: 10.1093/schbul/sbz051.
[18]
GOTO M, ABE O, HAGIWARA A, et al. Advantages of using both voxel-and surface-based morphometry in cortical morphology analysis: A review of various applications[J]. Magn Reson Med Sci, 2022, 21(1): 41-57. DOI: 10.2463/mrms.rev.2021-0096.
[19]
TAMNES C K, HERTING M M, GODDINGS A L, et al. Development of the cerebral cortex across adolescence: A multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness[J]. J Neurosci, 2017, 37(12): 3402-3412. DOI: 10.1523/jneurosci.3302-16.2017.
[20]
ZHOU J B, TANG X Y, HAN Y P, et al. Prediabetes and structural brain abnormalities: Evidence from observational studies[J/OL]. Diabetes Metab Res Rev, 2020, 36(4): e3261 [2023-09-25]. https://pubmed.ncbi.nlm.nih.gov/31856401/. DOI: 10.1002/dmrr.3261.
[21]
MARSEGLIA A, FRATIGLIONI L, KALPOUZOS G, et al. Prediabetes and diabetes accelerate cognitive decline and predict microvascular lesions: A population-based cohort study[J]. Alzheimers Dement, 2019, 15(1): 25-33. DOI: 10.1016/j.jalz.2018.06.3060.
[22]
TAYLOR M K, SULLIVAN D K, SWERDLOW R H, et al. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults[J]. Am J Clin Nutr, 2017, 106(6): 1463-1470. DOI: 10.3945/ajcn.117.162263.
[23]
BIGLER E D, MORTENSEN S, NEELEY E S, et al. Superior temporal gyrus, language function, and autism[J]. Dev Neuropsychol, 2007, 31(2): 217-238. DOI: 10.1080/87565640701190841.
[24]
ONITSUKA T, SHENTON M E, SALISBURY D F, et al. Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study[J]. Am J Psychiatry, 2004, 161(9): 1603-1611. DOI: 10.1176/appi.ajp.161.9.1603.
[25]
RUDEBECK P H, RICH E L. Orbitofrontal cortex[J/OL]. Curr Biol, 2018, 28(18): R1083-R1088 [2023-09-25]. https://pubmed.ncbi.nlm.nih.gov/30253144/. DOI: 10.1016/j.cub.2018.07.018.
[26]
CRISÓSTOMO J, DUARTE J V, MORENO C, et al. A novel morphometric signature of brain alterations in type 2 diabetes: Patterns of changed cortical gyrification[J]. Eur J Neurosci, 2021, 54(6): 6322-6333. DOI: 10.1111/ejn.15424.
[27]
HIRABAYASHI N, HATA J, FURUTA Y, et al. Association between diabetes and gray matter atrophy patterns in a general older japanese population: The hisayama study[J]. Diabetes Care, 2022, 45(6): 1364-1371. DOI: 10.2337/dc21-1911.
[28]
ANTAL B, MCMAHON L P, SULTAN S F, et al. Type 2 diabetes mellitus accelerates brain aging and cognitive decline: Complementary findings from UK Biobank and meta-analyses[J/OL]. Elife, 2022, 11: e73138 [2023-09-25]. https://pubmed.ncbi.nlm.nih.gov/35608247/. DOI: 10.7554/eLife.73138.
[29]
HAMED S A. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications[J]. Expert Rev Clin Pharmacol, 2017, 10(4): 409-428. DOI: 10.1080/17512433.2017.1293521.
[30]
BIESSELS G J, DESPA F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications[J]. Nat Rev Endocrinol, 2018, 14(10): 591-604. DOI: 10.1038/s41574-018-0048-7.
[31]
LESZEK J, TRYPKA E, TARASOV V V, et al. Type 3 diabetes mellitus: A novel implication of alzheimers disease[J]. Curr Top Med Chem, 2017, 17(12): 1331-1335. DOI: 10.2174/1568026617666170103163403.
[32]
POTENZA M A, SGARRA L, DESANTIS V, et al. Diabetes and Alzheimer's disease: Might mitochondrial dysfunction help deciphering the common path?[J/OL]. Antioxidants (Basel), 2021, 10(8): 125 [2023-09-25]. https://pubmed.ncbi.nlm.nih.gov/34439505/. DOI: 10.3390/antiox10081257.

PREV Resting-state fMRI study on altered spontaneous brain activity of Parkinson,s disease patients with and without rapid eye movement sleep behavior disorder
NEXT The relationship between the abnormality of multilayer networks and emotional impairments in sudden sensorineural hearing loss patients with migraine
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn