Share:
Share this content in WeChat
X
Clinical Article
The relationship between the abnormality of multilayer networks and emotional impairments in sudden sensorineural hearing loss patients with migraine
MIAO Xiuqian  XU Jinjing  LI Biao  FENG Yuan  CHEN Yuchen  YIN Xindao 

Cite this article as: MIAO X Q, XU J J, LI B, et al. The relationship between the abnormality of multilayer networks and emotional impairments in sudden sensorineural hearing loss patients with migraine[J]. Chin J Magn Reson Imaging, 2024, 15(4): 15-19. DOI:10.12015/issn.1674-8034.2024.04.003.


[Abstract] Objective To explore the relationship between sudden sensorineural hearing loss (SSNHL) with migraine and emotional impairments using multilayer neural network technology.Materials and Methods We recruited 41 SSNHL with migraine patients and 47 healthy controls in this study. And all participants underwent evaluation of hearing abilities, migraine, neuropsychological assessments, as well resting-state functional brain imaging. Multilayer network analysis was computed to identify dynamic changes in brain global networks. Graph theoretical network analysis (GRETNA) was used to process blood oxygen level dependent (BOLD) data, and Pearson correlation analysis was conducted to calculate the correlation between functional MRI data and emotional impairments.Results The two groups were well matched in age, sex and education level. The mean hearing thresholds of both ears in SSNHL patients with migraine were significantly higher than healthy controls. Moreover, the scores of anxiety and depression were significantly higher in otologic migraine patients. There was no significant difference in overall modularity between the patients and healthy controls. But significant differences of network switching rates in the right Rolandic operculum and middle cingulate cortex (MCC), left cuneus and inferior occipital gyrus (P<0.005, false discovery rate correction) were observed. Additionally, the conversion rate of MCC was negatively correlated with depression in SSNHL patients with migraine group (r=-0.41, P=0.008).Conclusions The decrease of switching rate in SSNHL patients with migraine is closely related to depression, which helps to elucidate the neuropathological basis of emotional impairments induced by SSNHL with migraine.
[Keywords] sudden sensorineural hearing loss with migraine;neural imaging;magnetic resonance imaging;multilayer network;anxiety;depression

MIAO Xiuqian1   XU Jinjing2*   LI Biao2   FENG Yuan1   CHEN Yuchen1   YIN Xindao1  

1 Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China

2 Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China

Corresponding author: XU J J, E-mail: xjj0117ent@163.com

Conflicts of interest   None.

Received  2023-09-15
Accepted  2024-03-25
DOI: 10.12015/issn.1674-8034.2024.04.003
Cite this article as: MIAO X Q, XU J J, LI B, et al. The relationship between the abnormality of multilayer networks and emotional impairments in sudden sensorineural hearing loss patients with migraine[J]. Chin J Magn Reson Imaging, 2024, 15(4): 15-19. DOI:10.12015/issn.1674-8034.2024.04.003.

[1]
GOSHTASBI K, ABOUZARI M, RISBUD A, et al. Tinnitus and subjective hearing loss are more common in migraine: A cross-sectional NHANES analysis[J]. Otol Neurotol, 2021, 42(9): 1329-1333. DOI: 10.1097/MAO.0000000000003247.
[2]
CHU C H, LIU C J, FUH J L, et al. Migraine is a risk factor for sudden sensorineural hearing loss: a nationwide population-based study[J]. Cephalalgia, 2013, 33(2): 80-86. DOI: 10.1177/0333102412468671.
[3]
KIM S Y, KIM M K, LIM J S, et al. Migraine increases the proportion of sudden sensorineural hearing loss: A longitudinal follow-up study[J]. Auris Nasus Larynx, 2019, 46(3): 353-359. DOI: 10.1016/j.anl.2018.10.006.
[4]
ABOUZARI M, GOSHTASBI K, CHUA J T, et al. Adjuvant migraine medications in the treatment of sudden sensorineural hearing loss[J]. Laryngoscope, 2021, 131(1): 283-288. DOI: 10.1002/lary.28618.
[5]
BEH S C, MASROUR S, SMITH S V, et al. The spectrum of vestibular migraine: Clinical features, triggers, and examination findings[J]. Headache, 2019, 59(5): 727-740. DOI: 10.1111/head.13484.
[6]
GU L, WANG Y, SHU H. Association between migraine and cognitive impairment[J/OL]. J Headache Pain, 2022, 23(1): 88 [2023-09-15]. https://pubmed.ncbi.nlm.nih.gov/35883043/. DOI: 10.1186/s10194-022-01462-4.
[7]
KRIMMEL S R, DESOUZA D D, KEASER M L, et al. Three dimensions of association link migraine symptoms and functional connectivity[J]. J Neurosci, 2022, 42(31): 6156-6166. DOI: 10.1523/JNEUROSCI.1796-21.2022.
[8]
AVENA-KOENIGSBERGER A, MISIC B, SPORNS O. Communication dynamics in complex brain networks[J]. Nat Rev Neurosci, 2017, 19(1): 17-33. DOI: 10.1038/nrn.2017.149.
[9]
KE M, WANG C, LIU G. Multilayer brain network modeling and dynamic analysis of juvenile myoclonic epilepsy[J/OL]. Front Behav Neurosci, 2023, 17: 1123534 [2023-09-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036585. DOI: 10.3389/fnbeh.2023.1123534.
[10]
PEDERSEN M, ZALESKY A, OMIDVARNIA A, et al. Multilayer network switching rate predicts brain performance[J]. Proc Natl Acad Sci U S A, 2018, 115(52): 13376-13381. DOI: 10.1073/pnas.1814785115.
[11]
CHEN Z, RONG L, XIAO L, et al. Altered brain function in patients with vestibular migraine: a study on resting state functional connectivity[J]. Neuroradiology, 2023, 65(3): 579-590. DOI: 10.1007/s00234-022-03086-6.
[12]
LAN L, LIU Y, XU J J, et al. Aberrant modulations of neurocognitive network dynamics in migraine comorbid with tinnitus[J/OL]. Front Aging Neurosci, 2022, 14: 913191 [2023-09-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9257523. DOI: 10.3389/fnagi.2022.913191.
[13]
ZHANG J, CUI H, YANG H, et al. Dynamic changes of large-scale resting-state functional networks in major depressive disorder[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 111: 110369 [2023-09-15]. https://pubmed.ncbi.nlm.nih.gov/38172115/. DOI: 10.1038/s41398-023-02722-w.
[14]
PEDERSEN M, ZALESKY A, OMIDVARNIA A, et al. Multilayer network switching rate predicts brain performance[J]. Proc Natl Acad Sci U S A, 2018, 115(52): 13376-13381. DOI: 10.1073/pnas.1814785115.
[15]
TRIARHOU L C. Cytoarchitectonics of the Rolandic operculum: morphofunctional ponderings[J]. Brain Struct Funct, 2021, 226(4): 941-950. DOI: 10.1007/s00429-021-02258-z.
[16]
MALIIA M D, DONOS C, BARBORICA A, et al. Functional mapping and effective connectivity of the human operculum[J]. Cortex, 2018, 109: 303-321. DOI: 10.1016/j.cortex.2018.08.024.
[17]
XU X M, LIU Y, FENG Y, et al. Degree centrality and functional connections in presbycusis with and without cognitive impairments[J]. Brain Imaging Behav, 2022, 16(6): 2725-2734. DOI: 10.1007/s11682-022-00734-6.
[18]
CHEN Q, LV H, WANG Z, et al. Brain structural and functional reorganization in tinnitus patients without hearing loss after sound therapy: A preliminary longitudinal study[J/OL]. Front Neurosci, 2021, 15: 573858 [2023-09-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7991098. DOI: 10.3389/fnins.2021.573858.
[19]
YUAN Z, QI Z, WANG R, et al. A corticoamygdalar pathway controls reward devaluation and depression using dynamic inhibition code[L/OL]. Neuron, 2023, 13: S0896-6273(23)00633-5[2023-09-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612212. DOI: 10.1016/j.neuron.2023.08.022.
[20]
CHEN J, YANG J, XIANG Z, et al. Graph theory analysis reveals premature ejaculation is a brain disorder with altered structural connectivity and depressive symptom: A DTI-based connectome study[J]. Eur J Neurosci, 2021, 53(6): 1905-1921. DOI: 10.1111/ejn.15048.
[21]
DICESARE G, MARCHI M, LOMBARDI G, et al. The middle cingulate cortex and dorso-central insula: A mirror circuit encoding observation and execution of vitality forms[J/OL]. Proc Natl Acad Sci U S A, 2021, 118(44): e2111358118 [2023-09-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612212. DOI: 10.1073/pnas.2111358118.
[22]
ZHU Z, WANG Y, LAU W, et al. Hyperconnectivity between the posterior cingulate and middle frontal and temporal gyrus in depression: Based on functional connectivity meta-analyses[J]. Brain Imaging Behav, 2022, 16(4): 1538-1551. DOI: 10.1007/s11682-022-00628-7.
[23]
OANE I, BARBORICA A, CHETAN F, et al. Cingulate cortex function and multi-modal connectivity mapped using intracranial stimulation[J/OL]. NeuroImage, 2020, 220: 117059 [2023-09-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC32562780. DOI: 10.1016/j.neuroimage.2020.117059.
[24]
YUAN Z, WANG W, ZHANG X, et al. Altered functional connectivity of the right caudate nucleus in chronic migraine: a resting-state fMRI study[J/OL]. J Headache Pain, 2022, 23(1): 154 [2023-09-15]. https://pubmed.ncbi.nlm.nih.gov/36460958/. DOI: 10.1186/s10194-022-01506-9.
[25]
TAN L L, PELZER P, HEINL C, et al. A pathway from midcingulate cortex to posterior insula gates nociceptive hypersensitivity[J]. Nat Neurosci, 2017, 20(11): 1591-1601. DOI: 10.1038/nn.4645.
[26]
BENARROCH E E. What is the role of the cingulate cortex in pain[J]. Neurology, 2020, 95(16): 729-732. DOI: 10.1212/WNL.0000000000010712.
[27]
PALEJWALA A H, O'CONNOR K P, PELARGOS P, et al. Anatomy and white matter connections of the lateral occipital cortex[J]. Surg Radiol Anat, 2020, 42(3): 315-328. DOI: 10.1007/s00276-019-02371-z.
[28]
GOBEL A, GOTTLICH M, HELDMANN M, et al. Experimentally induced subclinical hypothyroidism causes decreased functional connectivity of the cuneus: A resting state fMRI study[J]. Psychoneuroendocrinology, 2019, 102: 158-163. DOI: 10.1016/j.psyneuen.2018.12.012.
[29]
WU L, LIU F T, GE J J, et al. Clinical characteristics of cognitive impairment in patients with Parkinson's disease and its related pattern in 18F-FDG PET imaging[J]. Hum Brain Mapp, 2018, 39(12): 4652-4662. DOI: 10.1002/hbm.24311.
[30]
DUGRE J R, POTVIN S. Impaired attentional and socio-affective networks in subjects with antisocial behaviors: a meta-analysis of resting-state functional connectivity studies[J]. Psychol Med, 2021, 51(8): 1249-1259. DOI: 10.1017/S0033291721001525.
[31]
LI Y T, CHEN J W, YAN L F, et al. Dynamic alterations of functional connectivity and amplitude of low-frequency fluctuations in patients with unilateral sudden sensorineural hearing loss[J/OL]. Neurosci Lett, 2022, 772: 136470 [2023-09-15]. https://pubmed.ncbi.nlm.nih.gov/35066092. DOI: 10.1016/j.neulet.2022.136470.
[32]
LI Z, ZHOU J, LAN L, et al. Concurrent brain structural and functional alterations in patients with migraine without aura: an fMRI study[J]. J Headache Pain, 2020, 21(1): 141 [2023-09-15]. https://pubmed.ncbi.nlm.nih.gov/33287704/. DOI: 10.1186/s10194-020-01203-5.
[33]
QIAO Y, LI X, SHEN H, et al. Downward cross-modal plasticity in single-sided deafness[J]. Neuroimage, 2019, 197: 608-617. DOI: 10.1016/j.neuroimage.2019.05.031.
[34]
MEYLAKH N, HENDERSON L A. Exploring alterations in sensory pathways in migraine[J]. J Headache Pain, 2022, 23(1): 5 [2023-09-15]. https://pubmed.ncbi.nlm.nih.gov/35021998/. DOI: 10.1186/s10194-021-01371-y.
[35]
BURKE M J, JOUTSA J, COHEN A L, et al. Mapping migraine to a common brain network[J]. Brain, 2020, 143(2): 541-553. DOI: 10.1093/brain/awz405.
[36]
GOODALE M A, MILNER A D. Two visual pathways - Where have they taken us and where will they lead in future[J]. Cortex, 2018, 98: 283-292. DOI: 10.1016/j.cortex.2017.12.002.
[37]
WU Y J, WU N, HUANG X, et al. Evidence of cortical thickness reduction and disconnection in high myopia[J/OL]. Sci Rep, 2020, 10(1): 16239 [2023-09-15]. https://pubmed.ncbi.nlm.nih.gov/33004887/. DOI: 10.1038/s41598-020-73415-3.

PREV Correlation between cortical atrophy and cognitive function in pre-diabetes and type 2 diabetes mellitus
NEXT Brain structure and functional magnetic resonance imaging in patients with breast cancer undergoing chemotherapy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn