Share:
Share this content in WeChat
X
Clinical Article
Brain structure and functional magnetic resonance imaging in patients with breast cancer undergoing chemotherapy
SONG Yaqi  LI Yifan  XIA Jianguo  TIAN Weizhong 

Cite this article as: SONG Y Q, LI Y F, XIA J G, et al. Brain structure and functional magnetic resonance imaging in patients with breast cancer undergoing chemotherapy[J]. Chin J Magn Reson Imaging, 2024, 15(4): 20-24, 31. DOI:10.12015/issn.1674-8034.2024.04.004.


[Abstract] Objective To investigate the changes of gray matter volume (GMV) and functional connectivity (FC) of some brain regions in patients with breast cancer undergoing chemotherapy.Materials and Methods The study included 29 patients with breast cancer before chemotherapy treatment (C-) and 30 patients with breast cancer after chemotherapy treatment (C+). We performed psychological cognitive testing, structural and resting functional MRI (fMRI) scans respectively. Voxel-based morphometry (VBM) was used to analyze GMV, and the regions with volumetric variation were selected as regions of interest interest (ROI) for whole-brain FC analysis.Results Compared with the C- group, patients with C+ had reduced GMV in the left middle occipital gyrus (MNI: X, Y, Z=-10.5, -105.0, 0.0) and the right calcarine fissure and surrounding cortex (MNI: X, Y, Z=15.0, -103.5, -1.5). With the left middle occipital gyrus as the seed point, the FC with the temporal pole: superior temporal gyrus (MNI: X, Y, Z=63, 3, -3) and the left superior temporal gyrus (MNI: X, Y, Z=-54, -12, 3) was weakened. With the right calcarine fissure and surrounding cortex as the seed point, the FC with the left lingual gyrus (MNI: X, Y, Z=-33, -87, -15) was weakened. There was no significant correlation between GMV and FC values and psychological cognitive outcomes in C+ patients.Conclusions After chemotherapy, the volume of gray matter in some brain regions of breast cancer patients is changed, and FCs with multiple brain regions are impaired, which may be one of the neuropathological bases of cognitive, emotional and behavioral disorders.
[Keywords] breast cancer;chemotherapy-related cognitive impairment;functional magnetic resonance imaging;magnetic resonance imaging;gray matter volume;voxel-based morphometry;functional connectivity

SONG Yaqi1, 2   LI Yifan3   XIA Jianguo2   TIAN Weizhong2*  

1 Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225309, China

2 Department of Medical Imaging, the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225399, China

3 Nantong University Medical College, Nantong 226001, China

Corresponding author: TIAN W Z, E-mail: jstztwz@163.com

Conflicts of interest   None.

Received  2023-09-22
Accepted  2024-04-08
DOI: 10.12015/issn.1674-8034.2024.04.004
Cite this article as: SONG Y Q, LI Y F, XIA J G, et al. Brain structure and functional magnetic resonance imaging in patients with breast cancer undergoing chemotherapy[J]. Chin J Magn Reson Imaging, 2024, 15(4): 20-24, 31. DOI:10.12015/issn.1674-8034.2024.04.004.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
LANGE M, JOLY F, VARDY J, et al. Cancer-related cognitive impairment: an update on state of the art, detection, and management strategies in cancer survivors[J]. Ann Oncol, 2019, 30(12): 1925-1940. DOI: 10.1093/annonc/mdz410.
[3]
WHITTAKER A L, GEORGE R P, O'MALLEY L. Prevalence of cognitive impairment following chemotherapy treatment for breast cancer: a systematic review and meta-analysis[J/OL]. Sci Rep, 2022, 12(1): 2135 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/35136066/. DOI: 10.1038/s41598-022-05682-1.
[4]
YAO S, ZHANG Q, YAO X, et al. Advances of neuroimaging in chemotherapy related cognitive impairment (CRCI) of patients with breast cancer[J]. Breast Cancer Res Treat, 2023, 201(1): 15-26. DOI: 10.1007/s10549-023-07005-y.
[5]
LOMELI N, DI K, CZERNIAWSKI J, et al. Cisplatin-induced mitochondrial dysfunction is associated with impaired cognitive function in rats[J]. Free Radic Biol Med, 2017, 102: 274-286. DOI: 10.1016/j.freeradbiomed.2016.11.046.
[6]
LV L, MAO S, DONG H, et al. Pathogenesis, Assessments, and Management of Chemotherapy-Related Cognitive Impairment (CRCI): An Updated Literature Review[J/OL]. J Oncol, 2020, 2020: 3942439 [2023-09-22]. https://doi.org/10.1155/2020/3942439. DOI: 10.1155/2020/3942439.
[7]
SOFIS M J, JARMOLOWICZ D P, KAPLAN S V, et al. KU32 prevents 5-fluorouracil induced cognitive impairment[J]. Behav Brain Res, 2017, 329: 186-190. DOI: 10.1016/j.bbr.2017.03.042.
[8]
BERLIN C, LANGE K, LEKAYE H C, et al. Long-term clinically relevant rodent model of methotrexate-induced cognitive impairmen[J]. Neuro Oncol, 2020, 22(8): 1126-1137. DOI: 10.1093/neuonc/noaa086.
[9]
ASHBURNER J, FRISTON K J. Unified segmentation[J]. Neuroimage, 2005, 26(3): 839-851. DOI: 10.1016/j.neuroimage.2005.02.018.
[10]
ASHBURNER J. A fast diffeomorphic image registration algorithm[J]. Neuroimage, 2007, 38(1): 95-113. DOI: 10.1016/j.neuroimage.2007.07.007.
[11]
RAYES H A, TANI C, KWAN A, et al. What is the prevalence of cognitive impairment in lupus and which instruments are used to measure it? A systematic review and meta-analysis[J]. Semin Arthritis Rheum, 2018, 48(2): 240-255. DOI: 10.1016/j.semarthrit.2018.02.007.
[12]
CHEN W, LI H, HOU X, et al. Gray matter alteration in medication overuse headache: a coordinates-based activation likelihood estimation meta-analysis[J]. Brain Imaging Behav, 2022, 16(5): 2307-2319. DOI: 10.1007/s11682-022-00634-9.
[13]
ZHOU X, TAN Y, YU H, et al. Early alterations in cortical morphology after neoadjuvant chemotherapy in breast cancer patients: A longitudinal magnetic resonance imaging study[J]. Hum Brain Mapp, 2022, 43(15): 4513-4528. DOI: 10.1002/hbm.25969.
[14]
FENG Y, WANG Y F, ZHENG L J, et al. Network-level functional connectivity alterations in chemotherapy treated breast cancer patients: a longitudinal resting state functional MRI study[J/OL]. Cancer Imaging, 2020, 20(1): 73 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/33066822/. DOI: 10.1186/s40644-020-00355-6.
[15]
SHEN C Y, CHEN V C, YEH D C, et al. Association of functional dorsal attention network alterations with breast cancer and chemotherapy[J/OL]. Sci Rep, 2019, 9(1): 104 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/33066822/. DOI: 10.1038/s41598-018-36380-6.
[16]
WEFEL J S, KESLER S R, NOLL K R, et al. Clinical characteristics, pathophysiology, and management of noncentral nervous system cancer-related cognitive impairment in adults[J]. CA Cancer J Clin, 2015, 65(2): 123-138. DOI: 10.3322/caac.21258.
[17]
JANELSINS M C, HECKLER C E, PEPPONE L J, et al. Cognitive complaints in survivors of breast cancer after chemotherapy compared with age-matched controls: An analysis from a nationwide, multicenter, prospective longitudinal study[J]. J Clin Oncol, 2017, 35(5): 506-514. DOI: 10.1200/JCO.2016.68.5826.
[18]
PALEJWALA A H, O'CONNOR K P, PELARGOS P, et al. Anatomy and white matter connections of the lateral occipital cortex[J]. Surg Radiol Anat, 2020, 42(3): 315-328. DOI: 10.1007/s00276-019-02371-z.
[19]
DEPREZ S, AMANT F, SMEETS A, et al. Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning[J]. J Clin Oncol, 2012, 30(3): 274-281. DOI: 10.1200/JCO.2011.36.8571.
[20]
CIORBA A, HATZOPOULOS S, COGLIANDOLO C, et al. Functional magnetic resonance imaging in the olfactory perception of the same stimuli[J/OL]. Life (Basel), 2020, 11(1): 11 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/33375540/. DOI: 10.3390/life11010011.
[21]
KUPERS R, BEAULIEU-LEFEBVRE M, SCHNEIDER F C, et al. Neural correlates of olfactory processing in congenital blindness[J]. Neuropsychologia, 2011, 49(7): 2037-2044. DOI: 10.1016/j.neuropsychologia.2011.03.033.
[22]
WU F, LU Q, KONG Y, et al. A comprehensive overview of the role of visual cortex malfunction in depressive disorders: Opportunities and challenges[J]. Neurosci Bull, 2023, 39(9): 1426-1438. DOI: 10.1007/s12264-023-01052-7.
[23]
LAPIDUS K A B, GABBAY V, MAO X, et al. In vivo (1)H MRS study of potential associations between glutathione, oxidative stress and anhedonia in major depressive disorder[J]. Neurosci Lett, 2014, 569: 74-79. DOI: 10.1016/j.neulet.2014.03.056.
[24]
JIA J, WANG J, SUN Y, et al. A review of studies on two parallel visual streams in cortex: the dorsal and ventral visual pathways[J]. Chinese Journal of Optometry Ophthalmology and Visual Science, 2022, 24(4): 316-320. DOI: 10.3760/cma.j.cn115909-20201101-00419.
[25]
Bai D, Ma C, Wang C J, et al. fMRI research on regional homogeneity and functional connectivity changes of brain regions in patients with end-stage renal disease[J]. Chin J Magn Reson Imaging, 2022, 13(6): 66-70. DOI: 10.12015/issn.1674-8034.2022.06.013.
[26]
DE RUITER M B, DEARDORFF R L, BLOMMAERT J, et al. Brain gray matter reduction and premature brain aging after breast cancer chemotherapy: a longitudinal multicenter data pooling analysis[J]. Brain Imaging Behav, 2023, 17(5): 507-518. DOI: 10.1007/s11682-023-00781-7.
[27]
PARK B S, SEONG M, KO J, et al. Differences of connectivity between ESRD patients with PD and HD[J/OL]. Brain Behav, 2020, 10(8): e01708 [2023-09-22]. https://doi.org/10.1002/brb3.1708. DOI: 10.1002/brb3.1708.
[28]
MCDONALD B C, CONROY S K, AHLES T A, et al. Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study[J]. J Clin Oncol, 2012, 30(20): 2500-2508. DOI: 10.1200/JCO.2011.38.5674.
[29]
MCDONALD B C, CONROY S K, SMITH D J, et al. Frontal gray matter reduction after breast cancer chemotherapy and association with executive symptoms: a replication and extension study[J]. Brain Behav Immun, 2013, 30 Suppl(0): S117-S125. DOI: 10.1016/j.bbi.2012.05.007.
[30]
LEE W W, YOON E J, LEE J Y, et al. Visual hallucination and pattern of brain degeneration in Parkinson's disease[J]. Neurodegener Dis, 2017, 17(2-3): 63-72. DOI: 10.1159/000448517.
[31]
FENG Y. Study on resting state neural function network of cognitive dysfunction in breast cancer patients undergoing chemotherapy[D]. Nanjing: Nanjing Medical University, 2019.
[32]
CHANDRA A, DERVENOULAS G, POLITIS M. Magnetic resonance imaging in Alzheimer's disease and mild cognitive impairment[J]. J Neurol, 2019, 266(6): 1293-1302. DOI: 10.1007/s00415-018-9016-3.
[33]
JI J, ZHAO C Y, LIU Y Y, et al. Correlation between changes of amplitude of low-frequency fluctuation and cognitive impairment in patients with mild hepatic encephalopathy[J]. Chin J Neuromed, 2020, 19(11): 1109-1115. DOI: 10.3760/cma.j.cn115354-20200512-00361.

PREV The relationship between the abnormality of multilayer networks and emotional impairments in sudden sensorineural hearing loss patients with migraine
NEXT Predictive effect of resting state whole brain voxel level functional connectivity analysis on cognitive level of patients with mild cognitive impairment associated with cerebral small vessel disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn