Share:
Share this content in WeChat
X
Clinical Article
The value of DWI-based fractal dimension in evaluating the clinical efficacy of 3D printing technology for gliomas after surgery
XI Huaze  JING Mengyuan  CHAI Yanjun  ZHAO Zhiyong  YUAN Long  YANG Jingjing  XU Min  ZHOU Junlin 

Cite this article as: XI H Z, JING M Y, CHAI Y J, et al. The value of DWI-based fractal dimension in evaluating the clinical efficacy of 3D printing technology for gliomas after surgery[J]. Chin J Magn Reson Imaging, 2024, 15(4): 32-37, 44. DOI:10.12015/issn.1674-8034.2024.04.006.


[Abstract] Objective To evaluate whether personalized 3D printing technology can improve the clinical outcomes of surgically treated glioma patients using diffusion weighted imaging (DWI)-based FD.Materials and Methods We retrospectively analyzed 136 cases of patients with pathologically confirmed gliomas in our hospital from January 2018 to January 2023, of which 32 cases were in the experimental group, in which the personalized 3D printing technology was used preoperatively; the remaining patients were in the control group, in which conventional craniotomy was performed. The boundaries around the operated area were manually outlined on DWI maps one week after surgery, and the FD was measured after drawing binary maps. Using the median FD to group the control group, we compared whether there was a difference in surgical condition, pain level, neurological deficit, prognosis, and ability to perform daily life between patients with high and low FD in the control group; and explored whether the personalized 3D printing technology affected the FD of the edematous trauma and whether it would further improve the clinical outcome of the patients.Results The degree of pain (t=-13.228, P<0.001) and the degree of nerve defect (t=-2.627, P=0.008) in the high FD group were higher than those in the low FD group, and the activities of daily living (t=4.821, P<0.001) and prognosis (t=-3.058, P=0.003) were worse than those in the low FD group. The results of receiver operating characteristic (ROC) curve showed that FD could effectively distinguish the above four scores of patients. The use of personalized 3D printing technology before operation can reduce the FD of patients with edema zone, reduce the degree of nerve defect and improve the ability of daily living, but it has no obvious effect on improving the prognosis and pain in the operation area.Conclusions Personalized 3D printing technology can effectively reduce the FD of the oedema band in the surgical area of patients and reduce nerve damage, which is worthy of clinical application.
[Keywords] glioma;diffusion-weighted imaging;magnetic resonance imaging;fractal dimension;3D printing technology;precision medicine

XI Huaze1, 2, 3, 4   JING Mengyuan1, 2, 3, 4   CHAI Yanjun1, 3, 4   ZHAO Zhiyong5   YUAN Long1, 2, 3, 4   YANG Jingjing1, 2, 3, 4   XU Min1, 2, 3, 4   ZHOU Junlin1, 2, 3, 4*  

1 Department of Radiology, the Second Hospital of Lanzhou University, Lanzhou 730000, China

2 The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, China

3 Gansu Provincial Key Laboratory of Medical Imaging, the Second Hospital of Lanzhou University, Lanzhou 730000, China

4 Gansu International Science and Technology Cooperation Base for Artificial Intelligence in Medical Imaging, Lanzhou 730000, China

5 Neurosurgery Department, the Second Hospital of Lanzhou University, Lanzhou 730000, China

Corresponding author: ZHOU J L, E-mail: lzuzjl601@163.com

Conflicts of interest   None.

Received  2023-09-22
Accepted  2024-03-15
DOI: 10.12015/issn.1674-8034.2024.04.006
Cite this article as: XI H Z, JING M Y, CHAI Y J, et al. The value of DWI-based fractal dimension in evaluating the clinical efficacy of 3D printing technology for gliomas after surgery[J]. Chin J Magn Reson Imaging, 2024, 15(4): 32-37, 44. DOI:10.12015/issn.1674-8034.2024.04.006.

[1]
HANIF F, MUZAFFAR K, PERVEEN K, et al. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment[J]. Asian Pac J Cancer Prev, 2017, 18(1): 3-9. DOI: 10.22034/APJCP.2017.18.1.3.
[2]
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424. DOI: 10.3322/caac.21492.
[3]
DU F L, JI W J, MA X H. Effect of cerebrovascular interventional embolization therapy assisted with stereotactic radiotherapy therapy in the treatment of hvpervascular brain tumors[J]. Clinical Research and Practice, 2019, 4(24): 56-58. DOI: 10.19347/j.cnki.2096-1413.201924023.
[4]
HUA F, LAING K. Clinical effect of stereotactic targeting minimally invasive surgery in the treatment of brain tumor[J]. Clinical Research and Practice, 2023, 8(21): 53-56. DOI: 10.19347/j.cnki.2096-1413.202321014.
[5]
ZHANG L, BUTLER A, SUN J, et al. Fractal dimension assessment of brain white matter structural complexity post stroke in relation to upper-extremity motor function[J]. Brain Res, 2008, 1228: 229-240. DOI: 10.1016/j.brainres.2008.06.008
[6]
SMITHA K A, GUPTA A K, JAYASREE R S. Fractal analysis: Fractal dimension and lacunarity from MR images for differentiating the grades of glioma[J]. Phys Med Biol, 2015, 60: 6937-6947. DOI: 10.1088/0031-9155/60/17/6937.
[7]
SÁNCHEZ J, MARTÍN-LANDROVE M. Morphological and fractal properties of brain tumors[J/OL]. Front Physiol, 2022, 27, 13: 878391 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/35832478/. DOI: 10.3389/fphys.2022.878391.
[8]
CURTIN L, WHITMIRE P, WHITE H, et al. Shape matters: morphological metrics of glioblastoma imaging abnormalities as biomarkers of prognosis[J/OL]. Sci Rep, 2021, 11(1): 23202 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/34853344/. DOI: 10.1038/s41598-021-02495-6.
[9]
BATTALAPALLI D, VIDYADHARAN S, PRABHAKAR RAO BVVSN, et al. Fractal dimension: analyzing its potential as a neuroimaging biomarker for brain tumor diagnosis using machine learning[J/OL]. Front Physiol, 2023, 14: 1201617 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/37528895/. DOI: 10.3389/fphys.2023.1201617.
[10]
LIU X Y, XIAO D X, HE Y M, et al. To analyze brain tumors and peritumoral brain edema using MR perfusion weighted lmacing combined with MR diffusion weighted imaging[J]. J Clin Radiol, 2017, 36(7): 928-933. DOI: 10.13437/j.cnki.jcr.2017.07.004
[11]
HE C X, WANG W, FENG H Y, et al. Predictive value of magnetic reonance DWI technique for postoperative progression of glioma patients treated with bevacizumab combined with radiotherapy[J]. Chin J CT & MRI, 2023, 21(6): 11-13. DOI: 10.3969/j.issn.1672-5131.2023.06.004.
[12]
ERAKY A M, BECK R T, TREFFY R W, et al. Role of advanced MR imaging in diagnosis of neurological malignancies: Current status and future perspective[J/OL]. J Integr Neurosci, 2023, 22(3): 73 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/37258452/. DOI: 10.31083/j.jin2203073.
[13]
BERGER A, TZARFATI G G, SERAFIMOVA M, et al. Clinical and prognostic implications of rim restriction following glioma surgery[J/OL]. Sci Rep, 2022, 12(1): 12874 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/35896589/. DOI: 10.1038/s41598-022-16717-y.
[14]
LIU Z L, WANG X C, ZHANG H, et al. MR diffusion imaging: research advances in prognosis prediction of gliomas[J]. Chin J Magn Reson Imaging, 2021, 12(1): 77-80. DOI: 10.12015/issn.1674-8034.2021.01.017.
[15]
XIE G, LI K. A nomogram based on MRl and radiomics for prediction of postoperative recurrence of glioma[J]. J Clin Radiol, 2022, 41(10): 1814-1818. DOI: 10.13437/j.cnki.jcr.2022.10.022.
[16]
STUPP R, BRADA M, VAN DEN BENT M J, et al. High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2014, 25(3): 93-101. DOI: 10.1093/annonc/mdu050.
[17]
SARKAR N, CHAUDHURI B B. An efficient differential boxcounting approach to compute fractal dimension of image[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24 (1): 115-120. DOI: 10.1109/21.259692.
[18]
MALLELA A N, DENG H, GHOLIPOUR A, et al. Heterogeneous growth of the insula shapes the human brain[J/OL]. Proc Natl Acad Sci U S A, 2023, 120(24): e2220200120 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/37279278/. DOI: 10.1073/pnas.2220200120.
[19]
DORRAKI M, MURATOVIC D, FOULADZADEH A, et al. Hip osteoarthritis: A novel network analysis of subchondral trabecular bone structures[J/OL]. PNAS Nexus, 2022, 1(5): 258 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/36712355/. DOI: 10.1093/pnasnexus/pgac258.
[20]
WITTELER J, KJAER TW, TVILSTED S, et al. Re-Evaluation of prognostic factors for survival after radiotherapy of cerebral gliomas: a supplementary analysis to a previous study[J]. Anticancer Res, 2020, 40(11): 6513-6515. DOI: 10.21873/anticanres.14674.
[21]
RAGNHILDSTVEIT A, LI C, ZIMMERMAN M H, et al. Intra-operative applications of augmented reality in glioma surgery: a systematic review[J/OL]. Front Surg, 2023, 10: 1245851 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/37671031/. DOI: 10.3389/fsurg.2023.1245851.
[22]
ZHOU H, WU H, LI M, et al. Clinical efficacy of early postoperative intensity-modulated radiotherapy combined with Temozolomide chemotherapy in the treatment of patients with malignant glioma[J]. Pak J Med Sci, 2022, 38(6): 1460-1465. DOI: 10.12669/pjms.38.6.5244.
[23]
MALHOTRA A K, KARTHIKEYAN V, ZABIH V, et al. Adolescent and young adult glioma: systematic review of demographic, disease, and treatment influences on survival[J/OL]. Neurooncol Adv, 2022, 4(1): vdac168 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/36479061/. DOI: 10.1093/noajnl/vdac168.
[24]
GUPTA T, MAITRE M, MAITRE P, et al. High-dose salvage re-irradiation for recurrent/progressive adult diffuse glioma: healing or hurting?[J]. Clin Transl Oncol, 2021, 23(7): 1358-1367. DOI: 10.1007/s12094-020-02526-0.
[25]
LIU S. Value of maonetic resonance perfusion imacing in the differential diaanosis of hioh-arade olioma and sinole brain metastasis[J]. Chinese Journal of Medical Physics, 2019, 36(7): 808-810. DOI: 10.3969/j.issn.1005-202X.2019.07.012.
[26]
TANG W, CHEN Y, WANG X, et al. Expression of CXC-motif-chemokine 12 and the receptor C-X-C receptor 4 in glioma and theeffect on peri tumoral brain edema[J]. Oncol Lett, 2018, 15(2): 2501-2507. DOI: 10.3892/ol.2017.7547.
[27]
QIN X, LIU R, AKTER F, et al. Peri-tumoral brain edema associated with glioblastoma correlates with tumor recurrence[J]. J Cancer, 2021, 12(7): 2073-2082. DOI: 10.7150/jca.53198.
[28]
CHO S J, KIM H S, CHONG H S, et al. Radiological recurrence patterns after bevacizumab treatment of recurrent high-grade glioma: A systematic review and meta-analysis[J]. Korean J Radiol, 2020, 21(7): 908-918. DOI: 10.3348/kjr.2019.0898.
[29]
FU N X, SONG J X, LUO Z B. Value of multimodal functional magnetic resonance imaging in evaluating the peritumoral invasion of high grade glioma[J]. J Prac Radiol, 2019, 35(12): 1897-1900, 1939. DOI: 10.3969/j.issn.1002-1671.2019.12.003.
[30]
ALIZADEH M, BROOMAND LOMER N, AZAMI M, et al. Radiomics: The new promise for differentiating progression, recurrence, pseudoprogression, and radionecrosis in glioma and glioblastoma multiforme[J/OL]. Cancers (Basel), 2023, 15(18): 4429 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/37760399/. DOI: 10.3390/cancers15184429.
[31]
VIJITHANANDA S M, JAYATILAKE M L, GONÇALVES T C, et al. Texture feature analysis of MRI-ADC images to differentiate glioma grades using machine learning techniques[J/OL]. Sci Rep, 2023, 13(1): 15772 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/37737249/. DOI: 10.1038/s41598-023-41353-5.
[32]
SZYCHOT E, BHAGAWATI D, SOKOLSKA M J, et al. Evaluating drug distribution in children and young adults with diffuse midline glioma of the pons (DIPG) treated with convection-enhanced drug delivery[J/OL]. Front Neuroimaging, 2023, 2: 1062493 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/37554653/. DOI: 10.3389/fnimg.2023.1062493.
[33]
CHO N S, SANVITO F, THAKURIA S, et al. Multi-nuclear sodium, diffusion, and perfusion MRI in human gliomas[J]. J Neurooncol, 2023, 163(2): 417-427. DOI: 10.1007/s11060-023-04363-x.
[34]
KAMIMURA K, KAMIMURA Y, NAKANO T, et al. Differentiating brain metastasis from glioblastoma by time-dependent diffusion MRI[J/OL]. Cancer Imaging, 2023, 23(1): 75 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/37553578/. DOI: 10.1186/s40644-023-00595-2.
[35]
WNAG R, WANG S H, ZHANG H P, et al. Application value of DCE-MRI in tumor body, peritumoral edema area in grading diffuse glioma[J]. Chin J Magn Reson Imaging, 2021, 12(6): 88-91. DOI: 10.12015/issn.1674-8034.2021.06.017.
[36]
VILLANUEVA-MEYERJ E, WOODM D, CHOIB S, et al. MRI features and IDH mutational status of grade Ⅱ diffuse gliomas: Impact on diagnosis and prognosis[J]. AJR Am J Roentgenol, 2018, 210(3): 621-628. DOI: 10.2214/AJR.17.18457.
[37]
CHEN K Y, JIANG P C. Correlation between peritumoral edema of high-grade glioma and patients 'prognoses[J]. Chin J Clin Neurosurg, 2021, 26(5): 352-353, 359. DOI: 10.13798/j.issn.1009-153X.2021.05.011.
[38]
JACOBSON N M, BRUSILOVSKY J, DUCEY R, et al. The inner complexities of multimodal medical data: Bitmap-based 3D printing for surgical planning using dynamic physiology[J]. 3D Print Addit Manuf, 2023, 10(5): 855-868. DOI: 10.1089/3dp.2022.0265.
[39]
VEZIRSKA D, MILEV M, LALEVA L, et al. Three-dimensional printing in neurosurgery: A review of current indications and applications and a basic methodology for creating a three-dimensional printed model for the neurosurgical practice[J/OL]. Cureus, 2022, 14(12): e33153 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/30473948/. DOI: 10.7759/cureus.33153.
[40]
ZHOU B D, LI J, GAO F, et al. Effects of stereotactic minimally invasive surgery and craniotomy on neuropeptide levels and functional rehabilitation in patients with glioma[J]. Journal of Mathematical Medicine, 2022, 35(8): 1118-1120. DOI: 10.3969/j.issn.1004-4337.2022.08.004.
[41]
CHO J, RAHIMPOUR S, CUTLER A, et al. Enhancing reality: a systematic review of augmented reality in neuronavigation and education[J]. World Neurosurg, 2020, 139: 186-195. DOI: 10.1016/j.wneu.2020.04.043.
[42]
CONTRERAS LÓPEZ W O, NAVARRO P A, CRISPIN S. Intraoperative clinical application of augmented reality in neurosurgery: a systematic review[J]. Clin Neurol Neurosurg, 2019, 177: 6-11. DOI: 10.1016/j.clineuro.2018.11.018.

PREV Predictive effect of resting state whole brain voxel level functional connectivity analysis on cognitive level of patients with mild cognitive impairment associated with cerebral small vessel disease
NEXT Application of neurite orientation dispersion and density imaging to predict IDH genotype of adult diffuse glioma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn