Share:
Share this content in WeChat
X
Clinical Article
Value of three-dimensional arterial spin labeling in distinguishing between benign and malignant thyroid nodules
DENG Wenming  QIU Yingwei  KANG Wenyan  ZHONG Yihong  CHEN Shengli  WANG Mingyu  XIANG Lu  LIAO Yuehao 

Cite this article as: DENG W M, QIU Y W, KANG W Y, et al. Value of three-dimensional arterial spin labeling in distinguishing between benign and malignant thyroid nodules[J]. Chin J Magn Reson Imaging, 2024, 15(4): 45-49, 62. DOI:10.12015/issn.1674-8034.2024.04.008.


[Abstract] Objective To assess the diagnostic efficacy of three-dimensional pseudo-continuous arterial spin labeling (3D-pCASL) for thyroid nodules.Materials and Methods A total of 207 patients who underwent thyroid magnetic resonance imaging (MRI) at the Chinese Academy of Medical Sciences/Cancer Hospital&Shenzhen Hospital from November 2021 to April 2023 were included in this study, among which 74 patients had normal unilateral thyroid glands. The 3D-pCASL sequence was acquired along the horizontal axis with a post-labeling delay (PLD) time set at 1525 ms, and the labeling plane was positioned at the origin of the left common carotid artery. Blood flow (BF) measurements of both normal thyroid glands and thyroid nodules were obtained using AW 4.7 workstation. The t-test or non-parametric test was employed for between-group comparisons. Receiver operating characteristic (ROC) curve analysis and calculation of area under the curve (AUC) were performed to evaluate the diagnostic efficacy of BF in distinguishing benign from malignant thyroid nodules, as well as to compare papillary thyroid carcinoma (PTC) with non-papillary thyroid carcinoma (non-PTC).Results There was no significant difference in BF between male and female (P>0.05). The average BF of the normal lateral lobe of the thyroid was (162.73±24.24) mL/(100 g·min). A total of 235 thyroid nodules were observed in 207 patients (44 benign and 191 malignant). BF of malignant nodules was significantly higher than that of benign nodules, and the difference was statistically significant (left lobe t=6.607 and right lobe t =5.590, both P<0.001). The cut-off value of BF for differentiating benign from malignant thyroid nodules was 177.96 mL/(100 g·min), the sensitivity, specificity and accuracy were 73.1%, 93.7% and 89.4%, respectively (AUC=0.861). There was no significant difference in BF between PTC and non-PTC (t=1.578, P=0.124).Conclusions 3D-pCASL technology has great value in the differential diagnosis of benign and malignant thyroid nodules, and its quantitative value BF has limited value in differentiating different pathological types of thyroid cancer.
[Keywords] thyroid nodules;arterial spin labeling;perfusion;blood flow;magnetic resonance imaging

DENG Wenming1   QIU Yingwei2*   KANG Wenyan1   ZHONG Yihong1   CHEN Shengli2   WANG Mingyu1   XIANG Lu1   LIAO Yuehao1  

1 Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China

2 Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, China

Corresponding author: QIU Y W, E-mail: qiuyw1201@gmail.com

Conflicts of interest   None.

Received  2023-11-15
Accepted  2024-02-23
DOI: 10.12015/issn.1674-8034.2024.04.008
Cite this article as: DENG W M, QIU Y W, KANG W Y, et al. Value of three-dimensional arterial spin labeling in distinguishing between benign and malignant thyroid nodules[J]. Chin J Magn Reson Imaging, 2024, 15(4): 45-49, 62. DOI:10.12015/issn.1674-8034.2024.04.008.

[1]
CHAKRABORTY S, BALAKRISHNAN M C, RAPHAEL V, et al. Incidence and malignancy rates in thyroid nodules in north-east Indian population by Bethesda system: a single institutional experience of 3 years[J]. South Asian J Cancer, 2022, 12(2): 166-172. DOI: 10.1055/s-0042-1757776.
[2]
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[3]
SAJISEVI M, CAULLEY L, ESKANDER A, et al. Evaluating the rising incidence of thyroid cancer and thyroid nodule detection modes: a multinational, multi-institutional analysis[J]. JAMA Otolaryngol Head Neck Surg, 2022, 148(9): 811-818. DOI: 10.1001/jamaoto.2022.1743.
[4]
WU Y, ZHOU C M, SHI B, et al. Systematic review and meta-analysis: diagnostic value of different ultrasound for benign and malignant thyroid nodules[J]. Gland Surg, 2022, 11(6): 1067-1077. DOI: 10.21037/gs-22-254.
[5]
WANG C Y, LI Y, ZHANG M M, et al. Analysis of differential diagnosis of benign and malignant partially cystic thyroid nodules based on ultrasound characterization with a TIRADS grade-4a or higher nodules[J/OL]. Front Endocrinol, 2022, 13: 861070 [2023-11-14]. https://pubmed.ncbi.nlm.nih.gov/35651976/. DOI: 10.3389/fendo.2022.861070.
[6]
TASO M, ALSOP D C. Arterial spin labeling perfusion imaging[J]. Magn Reson Imaging Clin N Am, 2024, 32(1): 63-72. DOI: 10.1016/j.mric.2023.08.005.
[7]
WANG Y W, ZHOU Z, SUN Z G. Research progress of magnetic resonance imaging in diagnosis of thyroid nodules[J]. Chin J Magn Reson Imag, 2023, 14(8): 150-153, 181. DOI: 10.12015/issn.1674-8034.2023.08.026.
[8]
WU M N, LIANG L F, ZHANG M R, et al. Value of multi-parameter MRI in the diagnosis of thyroid benign and malignant nodules[J]. Chin J Radiol, 2021, 55(7): 710-715. DOI: 10.3760/cma.j.cn112149-20200822-01022.
[9]
HE P, HUERMAN·B H T B K, ZHANG M R, et al. Semiquantitative and quantitative analyses of dynamic contrast-enhanced magnetic resonance imaging in the differentiation between malignant and benign thyroid nodules[J]. Chin J Magn Reson Imag, 2021, 12(7): 12-17. DOI: 10.12015/issn.1674-8034.2021.07.003.
[10]
SAKAT M S, SADE R, KILIC K, et al. The use of dynamic contrast-enhanced perfusion MRI in differentiating benign and malignant thyroid nodules[J]. Indian J Otolaryngol Head Neck Surg, 2019, 71(Suppl 1): 706-711. DOI: 10.1007/s12070-018-1512-3.
[11]
SCHRAML C, SCHWENZER N F, MARTIROSIAN P, et al. Perfusion imaging of the pancreas using an arterial spin labeling technique[J]. J Magn Reson Imaging, 2008, 28(6): 1459-1465. DOI: 10.1002/jmri.21564.
[12]
SCHRAML C, MÜSSIG K, MARTIROSIAN P, et al. Autoimmune thyroid disease: arterial spin-labeling perfusion MR imaging[J]. Radiology, 2009, 253(2): 435-442. DOI: 10.1148/radiol.2533090166.
[13]
DENG W M, LIU Z, ZHONG Y H, et al. Application of three-dimensional arterial spin labeling technique in thyroid imaging at MR[J]. J Pract Radiol, 2021, 37(8): 1357-1361. DOI: 10.3969/j.issn.1002-1671.2021.08.032.
[14]
Quality and Safety Management Group & Magnetic Resonance Group, Branch Radiology, Chinese Medical Association. Expert consensus on the standardized application of arterial spin labeled brain perfusion MRI technology[J]. Chin J Radiol, 2016, 50(11): 817-824. DOI: 10.3760/cma.j.issn.1005-1201.2016.11.003.
[15]
ALSOP D C, DETRE J A, GOLAY X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia[J]. Magn Reson Med, 2015, 73(1): 102-116. DOI: 10.1002/mrm.25197.
[16]
MARTÍN-NOGUEROL T, KIRSCH C F E, MONTESINOS P, et al. Arterial spin labeling for head and neck lesion assessment: technical adjustments and clinical applications[J]. Neuroradiology, 2021, 63(12): 1969-1983. DOI: 10.1007/s00234-021-02772-1.
[17]
RAGUSA F, FALLAHI P, ELIA G, et al. Hashimotos' thyroiditis: Epidemiology, pathogenesis, clinic and therapy[J/OL]. Best Pract Res Clin Endocrinol Metab, 2019, 33(6): 101367 [2023-11-14]. https://pubmed.ncbi.nlm.nih.gov/31812326/. DOI: 10.1016/j.beem.2019.101367.
[18]
ZHOU X J, ZHOU D Q, ZHONG L J, et al. Dual-energy CT angiography in displaying thyroid feeding artery[J]. Chin J Med Imag Technol, 2019, 35(10): 1565-1568. DOI: 10.13929/j.1003-3289.201904078.
[19]
SAHA A, NANDY S. Cross sectional study on thyroid arteries with clinical correlations[J]. Bengal J Otolaryngol Head Neck Surg, 2023, 30(3): 305-312. DOI: 10.47210/bjohns.2022.v30i3.875.
[20]
SHAW S, MAHARAJ K, MIRZA T. Variations in origin of the superior thyroid artery: an update for the head and neck surgeon[J/OL]. Ann R Coll Surg Engl, 2021, 103(7): e238-e239 [2023-11-14]. https://pubmed.ncbi.nlm.nih.gov/34192484/. DOI: 10.1308/rcsann.2021.0007.
[21]
WESTRYCH K, RUZIK K, ZIELINSKA N, et al. Common trunk of the internal thoracic artery, inferior thyroid artery and thyrocervical trunk from the subclavian artery: a rare arterial variant[J]. Surg Radiol Anat, 2022, 44(7): 983-986. DOI: 10.1007/s00276-022-02977-w.
[22]
LÜ R R, YANG Z H, GE X, et al. Preliminary study of synthetic MRI combined with three-dimensional arterial spin labeling imaging in differentiating recurrence and pseudoprogression of glioma[J]. Chin J Magn Reson Imag, 2022, 13(8): 19-23, 35. DOI: 10.12015/issn.1674-8034.2022.08.004.
[23]
LIU T, XIAO L, WEI B, et al. Application value of mono- and bi-exponential model diffusion weighted imaging and arterial spin labeling in predicting short-term curative effect of recurrent nasopharyngeal carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(9): 63-69. DOI: 10.12015/issn.1674-8034.2023.09.011.
[24]
YU X D, YANG F, LIU X, et al. Arterial spin labeling and diffusion-weighted imaging for identification of retropharyngeal lymph nodes in patients with nasopharyngeal carcinoma[J/OL]. Cancer Imaging, 2022, 22(1): 40 [2023-11-14]. https://pubmed.ncbi.nlm.nih.gov/35978445/. DOI: 10.1186/s40644-022-00480-4.
[25]
RODRIGUES M G, DA SILVA L F F, ARAUJO-FILHO V J F, et al. Incidental thyroid carcinoma: correlation between FNAB cytology and pathological examination in 1093 cases[J/OL]. Clinics, 2022, 77: 100022 [2023-11-14]. https://pubmed.ncbi.nlm.nih.gov/35306374/. DOI: 10.1016/j.clinsp.2022.100022.
[26]
WANG H Y, MEHRAD M, ELY K A, et al. Incidence and malignancy rates of indeterminate pediatric thyroid nodules[J]. Cancer Cytopathol, 2019, 127(4): 231-239. DOI: 10.1002/cncy.22104.
[27]
LANGE S, MĘDRZYCKA-DĄBROWSKA W, ZORENA K, et al. Nephrogenic systemic fibrosis as a complication after gadolinium-containing contrast agents: a rapid review[J/OL]. Int J Environ Res Public Health, 2021, 18(6): 3000 [2023-11-14]. https://pubmed.ncbi.nlm.nih.gov/33804005/. DOI: 10.3390/ijerph18063000.
[28]
PAUDYAL R, LU Y G, HATZOGLOU V, et al. Dynamic contrast-enhanced MRI model selection for predicting tumor aggressiveness in papillary thyroid cancers[J/OL]. NMR Biomed, 2020, 33(1): e4166 [2023-11-14]. https://pubmed.ncbi.nlm.nih.gov/31680360/. DOI: 10.1002/nbm.4166.
[29]
HERSCOVITCH P, RAICHLE M E. What is the correct value for the brain: blood partition coefficient for water?[J]. J Cereb Blood Flow Metab, 1985, 5(1): 65-69. DOI: 10.1038/jcbfm.1985.9.
[30]
JUNG Y, TAN H, BURDETTE J H. Physical principles of non-gadolinium perfusion technique (arterial spin labeling)[M]//FARO SH, MOHAMED FB. Functional Neuroradiology. Cham: Springer, 2023: 35-46.10.1007/978-3-031-10909-6_3
[31]
YANG M, JIANG Y X, SU N, et al. The contrast enhanced perfusion pattern and pathological changes of papillary thyroid cancer (PTC) and the correlation with pathogesis[J/OL]. Ultrasound Med Biol, 2017, 43: S45 [2023-11-14]. https://www.umbjournal.org/article/S0301-5629(17)31451-5/fulltext. DOI: 10.1016/j.ultrasmedbio.2017.08.1090.

PREV Application of neurite orientation dispersion and density imaging to predict IDH genotype of adult diffuse glioma
NEXT Study on the ability to grade the risk of cervical spondylotic myelopathy by using machine learning model based on MRI radiomics
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn