Share:
Share this content in WeChat
X
Clinical Article
Study on quantitative assessment of left ventricular dysfunction in patients with COPD by cardiovascular magnetic resonance feature tracking
WANG Feiyao  ZHANG Tianyue  LI Rui 

Cite this article as: WANG F Y, ZHANG T Y, LI R. Study on quantitative assessment of left ventricular dysfunction in patients with COPD by cardiovascular magnetic resonance feature tracking[J]. Chin J Magn Reson Imaging, 2024, 15(4): 56-62. DOI:10.12015/issn.1674-8034.2024.04.010.


[Abstract] Objective To quantitatively evaluate the global and segmental subclinical myocardial dysfunction of the left ventricle in patients with chronic obstructive pulmonary disease (COPD) by cardiovascular magnetic resonance feature tracking (CMR-FT).Materials and Methods A total of 47 COPD patients (including 25 males and 22 females) with an average age of 47.26±4.66 who have met the inclusion and exclusion criteria in our hospital from October 2021 to February 2023 are retrospective collected. Twenty-eight COPD patients showed no significant abnormalities in the coronary arteries, while 19 COPD patients had mild coronary artery stenosis (stenosis rate<50%). In the meantime, 30 healthy volunteers matched for age, gender, and smoking habits (including 17 males and 13 females) with an average age of 47.47±4.42 were included as the normal control group. All participants underwent 3.0 T CMR examination to analyze the differences between the COPD group and the normal control group in left ventricular conventional cardiac function, the peak strain (PS) in all directions (radial, circumferential and longitudinal) of the global and segmental myocardium. Due to the high incidence of cardiovascular disease in COPD patients, we conducted subgroup analysis on the global and segmental PS in all directions of the left ventricle in patients with normal coronary arteries and mild coronary stenosis. Independent sample t-test was used to compare data between two groups that follow a normal distribution. Mann-Whitney U test was used to compare the data between the two groups that did not conform to the normal distribution. The χ2 test was used for gender comparison between the two groups.Results The left ventricular PS of the global, middle segment and basal segment in all directions in COPD group was lower than that in the normal control group (all P<0.05), the apical segment radial and longitudinal PS were significantly lower than that in the normal control group, and there was no significant difference in the apical segment circumferential PS compared with that in the normal control group (P=0.268). In subgroup analysis, there was no significant difference in the left ventricle PS of the global, apical segment, middle segment and basal segment in all directions between COPD patients with mild coronary artery stenosis and those with normal coronary arteries (all P>0.05).Conclusions The use of CMR-FT can quantitatively evaluate the global and segmental subclinical myocardial dysfunction of the left ventricle in COPD patients, and its myocardial injury is caused by COPD itself. CMR-FT is expected to provide imaging basis for early diagnosis and prognostic evaluation of diseases.
[Keywords] chronic obstructive pulmonary disease;myocardial dysfunction;myocardial strain;feature tracking;cardiovascular magnetic resonance;magnetic resonance imaging

WANG Feiyao   ZHANG Tianyue   LI Rui*  

Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China

Corresponding author: LI R, E-mail: ddtwg_nsmc@163.com

Conflicts of interest   None.

Received  2023-11-10
Accepted  2024-02-27
DOI: 10.12015/issn.1674-8034.2024.04.010
Cite this article as: WANG F Y, ZHANG T Y, LI R. Study on quantitative assessment of left ventricular dysfunction in patients with COPD by cardiovascular magnetic resonance feature tracking[J]. Chin J Magn Reson Imaging, 2024, 15(4): 56-62. DOI:10.12015/issn.1674-8034.2024.04.010.

[1]
KAHNERT K, JÖRRES R A, BEHR J, et al. The diagnosis and treatment of COPD and its comorbidities[J]. Dtsch Arztebl Int, 2023, 120(25): 434-444. DOI: 10.3238/arztebl.m2023.027.
[2]
Expert Group of The Chronic Obstructive Pulmonary Disease Assembly, Chinese Thoracic Society, Chinese Medical Association. Chinese expert consensus on the management of cardiovascular comorbidities in patients with chronic obstructive pulmonary disease[J]. Chin J Tuberc Respir Dis, 2022, 45(12): 1180-1191. DOI: 10.3760/cma.j.cn112147-20220505-00380.
[3]
KRISHNAN S, TAN W C, FARIAS R, et al. Impaired spirometry and COPD increase the risk of cardiovascular disease: a Canadian cohort study[J]. Chest, 2023, 164(3): 637-649. DOI: 10.1016/j.chest.2023.02.045.
[4]
CHRISTENSON S A, SMITH B M, BAFADHEL M, et al. Chronic obstructive pulmonary disease[J]. Lancet, 2022, 399(10342): 2227-2242. DOI: 10.1016/S0140-6736(22)00470-6.
[5]
GREDIC M, BLANCO I, KOVACS G, et al. Pulmonary hypertension in chronic obstructive pulmonary disease[J]. Br J Pharmacol, 2021, 178(1): 132-151. DOI: 10.1111/bph.14979.
[6]
RUOPP N F, COCKRILL B A. Diagnosis and treatment of pulmonary arterial hypertension: a review[J]. JAMA, 2022, 327(14): 1379-1391. DOI: 10.1001/jama.2022.4402.
[7]
SVENDSEN C D, KUIPER K K J, OSTRIDGE K, et al. Factors associated with coronary heart disease in COPD patients and controls[J/OL]. PLoS One, 2022, 17(4): e0265682 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/35476713/. DOI: 10.1371/journal.pone.0265682.
[8]
LIU H R, WU D M, LI N, et al. Research progress on comorbidity of chronic obstructive pulmonary disease and coronary heart disease[J]. Pract J Card Cereb Pneumal Vasc Dis, 2023, 31(4): 126-131. DOI: 10.12114/j.issn.1008-5971.2023.00.034.
[9]
SABIT R, BOLTON C E, FRASER A G, et al. Sub-clinical left and right ventricular dysfunction in patients with COPD[J]. Respir Med, 2010, 104(8): 1171-1178. DOI: 10.1016/j.rmed.2010.01.020.
[10]
HILDE J M, HISDAL J, SKJØRTEN I, et al. Left ventricular dysfunction in COPD without pulmonary hypertension[J/OL]. PLoS One, 2020, 15(7): e0235075 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/32673327/. DOI: 10.1371/journal.pone.0235075.
[11]
ZHANG W, YAO Y Q, GU M M, et al. Effect of chronic obstructive pulmonary disease on myocardial injury and myocardial cells ultrastructure[J]. Guangxi Med J, 2014, 36(1): 5-7. DOI: 10.11675/j.issn.0253-4304.2014.01.02.
[12]
NILSSON U, MILLS N L, MCALLISTER D A, et al. Cardiac biomarkers of prognostic importance in chronic obstructive pulmonary disease[J/OL]. Respir Res, 2020, 21(1): 162 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/32590988/. DOI: 10.1186/s12931-020-01430-z.
[13]
HAWKINS N M, PETERSON S, EZZAT A M, et al. Control of cardiovascular risk factors in patients with chronic obstructive pulmonary disease[J]. Ann Am Thorac Soc, 2022, 19(7): 1102-1111. DOI: 10.1513/AnnalsATS.202104-463OC.
[14]
FABBRI L M, CELLI B R, AGUSTÍ A, et al. COPD and multimorbidity: recognising and addressing a syndemic occurrence[J]. Lancet Respir Med, 2023, 11(11): 1020-1034. DOI: 10.1016/S2213-2600(23)00261-8.
[15]
MACLAGAN L C, CROXFORD R, CHU A N, et al. Quantifying COPD as a risk factor for cardiac disease in a primary prevention cohort[J/OL]. Eur Respir J, 2023, 62(2): 2202364 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/37385658/. DOI: 10.1183/13993003.02364-2022.
[16]
WELLS J M, PAYNE G A. Mind the gap: addressing cardiovascular disease in chronic obstructive pulmonary disease[J]. Ann Am Thorac Soc, 2022, 19(7): 1093-1095. DOI: 10.1513/AnnalsATS.202204-317ED.
[17]
XU J, YANG W J, ZHAO S H, et al. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives[J]. Eur Radiol, 2022, 32(8): 5424-5435. DOI: 10.1007/s00330-022-08629-2.
[18]
HE J, ZHAO S H, LU M J. Cardiac magnetic resonance feature tracking technique and its progress[J]. Chin J Magn Reson Imag, 2020, 11(6): 469-473. DOI: 10.12015/issn.1674-8034.2020.06.018.
[19]
DOMENECH-XIMENOS B, SANZ-DE LA GARZA M, SEPULVEDA-MARTINEZ Á, et al. Assessment of myocardial deformation with CMR: a comparison with ultrasound speckle tracking[J]. Eur Radiol, 2021, 31(10): 7242-7250. DOI: 10.1007/s00330-021-07857-2.
[20]
RAJIAH P S, KALISZ K, BRONCANO J, et al. Myocardial strain evaluation with cardiovascular MRI: physics, principles, and clinical applications[J]. Radiographics, 2022, 42(4): 968-990. DOI: 10.1148/rg.210174.
[21]
ZHANG H Y, ZHU L Y, ZHAO S H, et al. Research progresses of cardiac magnetic resonance in 2022[J]. Chin J Magn Reson Imag, 2023, 14(6): 133-138, 144. DOI: 10.12015/issn.1674-8034.2023.06.024.
[22]
CENGIZ ELÇIOĞLU B, KAMAT S, YURDAKUL S, et al. Assessment of subclinical left ventricular systolic dysfunction and structural changes in patients with chronic obstructive pulmonary disease[J]. Intern Med J, 2022, 52(10): 1791-1798. DOI: 10.1111/imj.15424.
[23]
AGUSTÍ A, CELLI B R, CRINER G J, et al. Global initiative for chronic obstructive lung disease 2023 report: gold executive summary[J/OL]. Eur Respir J, 2023, 61(4): 2300239 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/36858443/. DOI: 10.1183/13993003.00239-2023.
[24]
PELÀ G, CALZI M L, PINELLI S, et al. Left ventricular structure and remodeling in patients with COPD[J/OL]. Int J Chron Obstruct Pulmon Dis, 2016, 11: 1015-1022 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/27257378/. DOI: 10.2147/COPD.S102831.
[25]
PIZARRO C, VAN ESSEN F, LINNHOFF F, et al. Speckle tracking echocardiography in chronic obstructive pulmonary disease and overlapping obstructive sleep apnea[J/OL]. Int J Chron Obstruct Pulmon Dis, 2016, 11: 1823-1834 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/27536094/. DOI: 10.2147/COPD.S108742.
[26]
WANG F Y, LI C P, GUO D D, et al. Quantitative assessment of left ventricular dysfunction in patients with cirrhosis by cardiac magnetic resonance feature tracking: a preliminary study[J]. J Pract Radiol, 2020, 36(9): 1396-1401. DOI: 10.3969/j.issn.1002-1671.2020.09.011.
[27]
LI D S, AVAZMOHAMMADI R, MERCHANT S S, et al. Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3D kinematics[J/OL]. J Mech Behav Biomed Mater, 2020, 103: 103508 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/32090941/. DOI: 10.1016/j.jmbbm.2019.103508.
[28]
KUNIEWICZ M, BASZKO A, ALI D, et al. Left ventricular summit-concept, anatomical structure and clinical significance[J/OL]. Diagnostics, 2021, 11(8): 1423 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/34441357/. DOI: 10.3390/diagnostics11081423.
[29]
OCHS A, RIFFEL J, OCHS M M, et al. Myocardial mechanics in dilated cardiomyopathy: prognostic value of left ventricular torsion and strain[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 136 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/34852822/. DOI: 10.1186/s12968-021-00829-x.
[30]
HE J, YANG W J, WU W C, et al. Clinical features, myocardial strain and tissue characteristics of heart failure with preserved ejection fraction in patients with obesity: a prospective cohort study[J/OL]. EClinicalMedicine, 2022, 55: 101723 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/36386034/. DOI: 10.1016/j.eclinm.2022.101723.
[31]
SKAARUP K G, LASSEN M C H, JOHANSEN N D, et al. Link between myocardial deformation phenotyping using longitudinal and circumferential strain and risk of incident heart failure and cardiovascular death[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(8): 999-1006. DOI: 10.1093/ehjci/jead075.
[32]
MUPPARAPU M, VENKATARAM R, BAIKUNJE N, et al. Assessment of left ventricular function in subjects with chronic obstructive pulmonary disease[J/OL]. Monaldi Arch Chest Dis, 2023: [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/37846729/. DOI: 10.4081/monaldi.2023.2654.
[33]
LODGE K M, VASSALLO A, LIU B, et al. Hypoxia increases the potential for neutrophil-mediated endothelial damage in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2022, 205(8): 903-916. DOI: 10.1164/rccm.202006-2467OC.
[34]
YANG I A, JENKINS C R, SALVI S S. Chronic obstructive pulmonary disease in never-smokers: risk factors, pathogenesis, and implications for prevention and treatment[J]. Lancet Respir Med, 2022, 10(5): 497-511. DOI: 10.1016/S2213-2600(21)00506-3.
[35]
VOULGARIS A, ARCHONTOGEORGIS K, STEIROPOULOS P, et al. Cardiovascular disease in patients with chronic obstructive pulmonary disease, obstructive sleep apnoea syndrome and overlap syndrome[J]. Curr Vasc Pharmacol, 2021, 19(3): 285-300. DOI: 10.2174/1570161118666200318103553.
[36]
ZHOU J J, TANG X P, YU S S, et al. A primary study of evaluating the left ventricular myocardial strain in patients with coronary heart disease by CT feature tracking[J]. Chin J Radiol, 2022, 56(4): 392-397. DOI: 10.3760/cma.j.cn112149-20210827-00801.

PREV Study on the ability to grade the risk of cervical spondylotic myelopathy by using machine learning model based on MRI radiomics
NEXT Value of CMR radiomics combined with clinical factors in predicting hypertrophic cardiomyopathy complicated by ventricular arrhythmias
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn