Share:
Share this content in WeChat
X
Clinical Article
Value of CMR radiomics combined with clinical factors in predicting hypertrophic cardiomyopathy complicated by ventricular arrhythmias
LÜ Jing  ZHU Yongqi  ZHU Yanfang  HE Ying  HU Qian  SHAO Jiujie  WANG Yilin  WANG Pei  LIU Yun  ZHU Li 

Cite this article as: LÜ J, ZHU Y Q, ZHU Y F, et al. Value of CMR radiomics combined with clinical factors in predicting hypertrophic cardiomyopathy complicated by ventricular arrhythmias[J]. Chin J Magn Reson Imaging, 2024, 15(4): 63-71, 87. DOI:10.12015/issn.1674-8034.2024.04.011.


[Abstract] Objective To explore the value of radiomics features of myocardium in different regions based on cardiac magnetic resonance (CMR) and related clinical factors in predicting hypertrophic cardiomyopathy complicated by ventricular arrhythmias.Materials and Methods The CMR images and clinical data of 122 patients diagnosed with HCM from January 1, 2018 to May 31, 2023 were retrospectively collected and analyzed. According to the results of 24-hour dynamic electrocardiogram (24 h DCG), the patients were divided into a VAs combined group (40 cases) and a VAs uncombined group (82 cases). All subjects were divided into a training set and a test set according to a ratio of 7∶3. The training set was used to build the model, and the test set was used to evaluate the model efficacy. The left ventricular short axis unenhanced bright blood cine sequence from mitral valve level to apex was selected. On the basis of end-diastolic wall thickness , the myocardium of HCM patients was divided into hypertrophic regions and non-hypertrophic regions. At the end of ventricular diastole in all layers of left ventricular short axis myocardium, the delineation of areas of interest and the extraction of radiomics features of the whole ventricular wall myocardium, the myocardium in hypertrophic regions and non-hypertrophic regions were performed. Mann-Whitney U test, recursive feature elimination method and least absolute shrinkage and selection operator were used to screen the radiomics features, construct the radiomics model, establish the radiomics label and calculate the radiomics score. The clinical risk factors were screened by logistic regression analysis to establish the clinical factor model, and combined model which based on clinical risk factors and radiomcs features was constructed. Accuracy, sensitivity, specificity, positive predictive value, negative predictive value, area under the curve (AUC) and DeLong test were used to evaluate and compare the predictive power of models. The combined model was visualized by using a nomogram, and the fitting degree of the combined model was evaluated by Hosmer-Lemeshow test (H-L test) and calibration curve. The clinical practicability of the combined model was observed through decision curve analysis.Results In the training set, the AUC values of the combined model of the left ventricular non-hypertrophic region (AUC=0.89), combined model of the left ventricular hypertrophic region (AUC=0.98), combined model of the left ventricular whole myocardium (AUC=0.98) were higher than those of the radiomics model of left ventricular non-hypertrophic regions myocardium (AUC=0.74) and the radiomics model of left ventricular hypertrophic regions myocardium (AUC=0.85) and the radiomics model of left ventricular whole myocardium (AUC=0.86) (P<0.05) were higher than clinical factor model (AUC value=0.81) (P<0.05). The AUC value of the combined model of left ventricular non-hypertrophic regions myocardium (AUC=0.89) was lower than that of the combined model of left ventricular hypertrophic regions myocardium (AUC=0.98) and the combined model of left ventricular whole myocardium (AUC=0.98) (P<0.05). There was no significant difference in the AUC value between the combined model of left ventricular hypertrophy and the combined model of left ventricular whole myocardium (P>0.05). In the test set, the AUC value of the radiomics model of left ventricular non-hypertrophic regions myocardium (AUC=0.75) was lower than that of the combined model of left ventricular whole myocardium (AUC=0.93) and the combined model of left ventricular hypertrophic regions myocardium (AUC=0.95) (P<0.05). The AUC of the combined model of left ventricular hypertrophic regions myocardium (AUC=0.95) was higher than that of the combined model of left ventricular non-hypertrophy regions myocardium (AUC=0.80) (P<0.05).Conclusions The model based on the radiomics features of myocardium in different regions of CMR and related clinical factors has important value in predicting the risk of HCM patients complicated by VAs.
[Keywords] hypertrophic cardiomyopathy;ventricular arrhythmias;prediction model;cardiac magnetic resonance;radiomics;magnetic resonance imaging

LÜ Jing1   ZHU Yongqi2   ZHU Yanfang3   HE Ying1   HU Qian1   SHAO Jiujie1   WANG Yilin1   WANG Pei4   LIU Yun4   ZHU Li4*  

1 First School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China

2 Medical Imaging Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, China

3 Department of Radiology, Yinchuan Maternal and Child Health Care Hospital, Yinchuan 750299, China

4 Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China

Corresponding author: ZHU L, E-mail: zhuli72@163.com

Conflicts of interest   None.

Received  2023-10-23
Accepted  2024-03-22
DOI: 10.12015/issn.1674-8034.2024.04.011
Cite this article as: LÜ J, ZHU Y Q, ZHU Y F, et al. Value of CMR radiomics combined with clinical factors in predicting hypertrophic cardiomyopathy complicated by ventricular arrhythmias[J]. Chin J Magn Reson Imaging, 2024, 15(4): 63-71, 87. DOI:10.12015/issn.1674-8034.2024.04.011.

[1]
AUTHORS/TASK FORCE MEMBERS, ELLIOTT P M, ANASTASAKIS A, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2014, 35(39): 2733-2779. DOI: 10.1093/eurheartj/ehu284.
[2]
Chinese Heart Failure Association of Chinese Medical Docter Association, Editorial Board of Chinese Journal of Heart Failure and Cardiomyopathy. China hypertrophic cardiomyopathy management guidelines 2017[J]. Chin J Heart Fail Cardiomyopathy, 2017, 1(2): 65-86. DOI: 10.3760/cma.j.issn.2096-3076.2017.12.001.
[3]
OMMEN S R, MITAL S, BURKE M A, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: executive summary: a report of the American college of cardiology/american heart association joint committee on clinical practice guidelines[J]. J Am Coll Cardiol, 2020, 76(25): 3022-3055. DOI: 10.1016/j.jacc.2020.08.044.
[4]
SIONTIS K C, OMMEN S R, GESKE J B. Art and science of risk stratification of sudden cardiac death in hypertrophic cardiomyopathy: current state, unknowns, and future directions[J/OL]. Prog Cardiovasc Dis, 2023, 80: 25-31 [2023-10-22]. https://pubmed.ncbi.nlm.nih.gov/37586655/. DOI: 10.1016/j.pcad.2023.08.005.
[5]
SANTORO F, MANGO F, MALLARDI A, et al. Arrhythmic risk stratification among patients with hypertrophic cardiomyopathy[J/OL]. J Clin Med, 2023, 12(10): 3397 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/37240503/. DOI: 10.3390/jcm12103397.
[6]
BOLETI O D, ROUSSOS S, NORRISH G, et al. Sudden cardiac death in childhood RASopathy-associated hypertrophic cardiomyopathy: validation of the HCM risk-kids model and predictors of events[J/OL]. Int J Cardiol, 2023, 393: 131405 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/37777071/. DOI: 10.1016/j.ijcard.2023.131405.
[7]
Chinese Heart Failure Association of Chinese Medical Docter Association, National Heart Failure Committee, Editorial Board of Chinese Journal of Heart Failure and Cardiomyopathy. 2022 Chinese guildeline on hypertrophic cardimyopathy[J]. Chin J Heart Fail & Cardiomyopathy, 2022, 6(2): 80-103. DOI: 10.3760/cma.j.cn1101460-20220805-00070.
[8]
SEGEV A, WASSERSTRUM Y, ARAD M, et al. Ventricular arrhythmias in patients with hypertrophic cardiomyopathy: prevalence, distribution, predictors, and outcome[J]. Heart Rhythm, 2023, 20(10): 1385-1392. DOI: 10.1016/j.hrthm.2023.06.015.
[9]
LIU C M, CHANG S L, YEH Y H, et al. Enhanced detection of cardiac arrhythmias utilizing 14-day continuous ECG patch monitoring[J/OL]. Int J Cardiol, 2021, 332: 78-84 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/33727122/. DOI: 10.1016/j.ijcard.2021.03.015.
[10]
SHEN Q, LI J Q, CUI C, et al. A wearable real-time telemonitoring electrocardiogram device compared with traditional Holter monitoring[J]. J Biomed Res, 2020, 35(3): 238-246. DOI: 10.7555/JBR.34.20200074.
[11]
MALTÊS S, ABECASIS J, SANTOS R R, et al. LGE prevalence and patterns in severe aortic stenosis: when "junctional" means the same[J/OL]. Int J Cardiol, 2023, 378: 159-163 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/36828032/. DOI: 10.1016/j.ijcard.2023.02.034.
[12]
PERAZZOLO MARRA M, LAZZARI M D, ZORZI A, et al. Impact of the presence and amount of myocardial fibrosis by cardiac magnetic resonance on arrhythmic outcome and sudden cardiac death in nonischemic dilated cardiomyopathy[J]. Heart Rhythm, 2014, 11(5): 856-863. DOI: 10.1016/j.hrthm.2014.01.014.
[13]
O'HARA R P, PRAKOSA A, BINKA E, et al. Arrhythmia in hypertrophic cardiomyopathy: risk prediction using contrast enhanced MRI, T1 mapping, and personalized virtual heart technology[J/OL]. J Electrocardiol, 2022, 74: 122-127 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/36183522/. DOI: 10.1016/j.jelectrocard.2022.09.004.
[14]
KHAN H R, RODWELL P, TAHA A H, et al. Magnetic resonance left ventricle mass-index/fibrosis: long-term predictors for ventricular arrhythmia in hypertrophic cardiomyopathy-a retrospective registry[J/OL]. J Cardiovasc Dev Dis, 2023, 10(3): 120 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/36975884/. DOI: 10.3390/jcdd10030120.
[15]
HEN Y, OTAKI Y, IGUCHI N, et al. High-risk imaging characteristics in left ventricular apex for the life-threatening arrhythmic events in Japanese hypertrophic cardiomyopathy patients[J]. Heart Vessels, 2023, 38(12): 1442-1450. DOI: 10.1007/s00380-023-02295-0.
[16]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[17]
POLIDORI T, DE SANTIS D, RUCCI C, et al. Radiomics applications in cardiac imaging: a comprehensive review[J]. Radiol Med, 2023, 128(8): 922-933. DOI: 10.1007/s11547-023-01658-x.
[18]
HASSANI C, SAREMI F, VARGHESE B A, et al. Myocardial radiomics in cardiac MRI[J]. AJR Am J Roentgenol, 2020, 214(3): 536-545. DOI: 10.2214/AJR.19.21986.
[19]
AMANO Y, SUZUKI Y, YANAGISAWA F, et al. Relationship between extension or texture features of late gadolinium enhancement and ventricular tachyarrhythmias in hypertrophic cardiomyopathy[J/OL]. Biomed Res Int, 2018, 2018: 4092469 [2023-10-15]. https://pubmed.ncbi.nlm.nih.gov/30271782/. DOI: 10.1155/2018/4092469.
[20]
LÜ J, ZHU Y Q, ZHU Y F, et al. Study of the value of radiomics based on cardiac magnetic resonance in hypertrophic cardiomyopathy[J]. Chin J Magn Reson Imag, 2024, 15(2): 30-41. DOI: 10.12015/issn.1674-8034.2024.02.005.
[21]
ZHAO X J. Evaluating cardiac function by using cardiac magnetic resonance imaging for patients with hypertrophic cardiomyopathy and its value in predicting adverse cardiovascular events[J]. J Qiqihar Med Univ, 2020, 41(19): 2429-2431. DOI: 10.3969/j.issn.1002-1256.2020.19.019.
[22]
HARRIS K M, SPIRITO P, MARON M S, et al. Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophic cardiomyopathy[J]. Circulation, 2006, 114(3): 216-225. DOI: 10.1161/CIRCULATIONAHA.105.583500.
[23]
FREY N, LUEDDE M, KATUS H A. Mechanisms of disease: hypertrophic cardiomyopathy[J]. Nat Rev Cardiol, 2011, 9(2): 91-100. DOI: 10.1038/nrcardio.2011.159.
[24]
KUMAR K R, MANDLEYWALA S N, LINK M S. Atrial and ventricular arrhythmias in hypertrophic cardiomyopathy[J]. Card Electrophysiol Clin, 2015, 7(2): 173-186. DOI: 10.1016/j.ccep.2015.03.002.
[25]
SPIRITO P, WATSON R M, MARON B J. Relation between extent of left ventricular hypertrophy and occurrence of ventricular tachycardia in hypertrophic cardiomyopathy[J]. Am J Cardiol, 1987, 60(14): 1137-1142. DOI: 10.1016/0002-9149(87)90406-1.
[26]
ASSAF A, VAN DER GRAAF M, VAN BOVEN N, et al. Effect of myocardial scar size on the risk of ventricular arrhythmias in patients with chronic total coronary occlusion[J/OL]. Int J Cardiol, 2023, 390: 131205 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/37482094/. DOI: 10.1016/j.ijcard.2023.131205.
[27]
YU H Q, ZHAI J, LIU C L, et al. Radiomics based on MRI for predicting cervical cancer lymph-vascular space invasion[J]. Chin J Med Imag Technol, 2022, 38(3): 421-426. DOI: 10.13929/j.issn.1003-3289.2022.03.023.
[28]
LEE S H, PARK H, KO E S. Radiomics in breast imaging from techniques to clinical applications: a review[J]. Korean J Radiol, 2020, 21(7): 779-792. DOI: 10.3348/kjr.2019.0855.
[29]
EMRICH T, HALFMANN M, SCHOEPF U J, et al. CMR for myocardial characterization in ischemic heart disease: state-of-the-art and future developments[J/OL]. Eur Radiol Exp, 2021, 5(1): 14 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/33763757/. DOI: 10.1186/s41747-021-00208-2.
[30]
VAN RIJSINGEN I A, BEKKERS S C, SCHALLA S, et al. Exercise related ventricular arrhythmias are related to cardiac fibrosis in hypertrophic cardiomyopathy mutation carriers[J]. Neth Heart J, 2011, 19(4): 168-174. DOI: 10.1007/s12471-011-0090-8.
[31]
ZHANG K, WANG S W, LI X Y, et al. Mechanism of ion channel impairment in the occurrence of arrhythmia in patients with hypertrophic cardiomyopathy[J]. Cardiol Rev, 2023 [2023-10-26]. https://pubmed.ncbi.nlm.nih.gov/37812010/. DOI: 10.1097/CRD.0000000000000612.
[32]
COLEMAN J A, ASHKIR Z, RAMAN B, et al. Mechanisms and prognostic impact of myocardial ischaemia in hypertrophic cardiomyopathy[J]. Int J Cardiovasc Imaging, 2023, 39(10): 1979-1996. DOI: 10.1007/s10554-023-02894-y.
[33]
WANG J, BRAVO L, ZHANG J Q, et al. Radiomics analysis derived from LGE-MRI predict sudden cardiac death in participants with hypertrophic cardiomyopathy[J/OL]. Front Cardiovasc Med, 2021, 8: 766287 [2023-10-15]. https://pubmed.ncbi.nlm.nih.gov/34957254/. DOI: 10.3389/fcvm.2021.766287.
[34]
FAHMY A S, ROWIN E J, JAAFAR N, et al. Radiomics of late gadolinium enhancement reveals prognostic valueof myocardial scar heterogeneity in hypertrophic cardiomyopathy[J]. JACC Cardiovasc Imaging, 2024, 17(1): 16-27. DOI: 10.1016/j.jcmg.2023.05.003.
[35]
KOTU L P, ENGAN K, BORHANI R, et al. Cardiac magnetic resonance image-based classification of the risk of arrhythmias in post-myocardial infarction patients[J]. Artif Intell Med, 2015, 64(3): 205-215. DOI: 10.1016/j.artmed.2015.06.001.
[36]
EFTESTØL T, WOIE L, ENGAN K, et al. Texture analysis to assess risk of serious arrhythmias after myocardial infarction[C]//2012 Computing in Cardiology. Krakow, Poland. IEEE, 2012: 365-368.
[37]
AMADO L C, LIMA J A. Myocardial scar as arrhythmia risk in patients with hypertrophic cardiomyopathy[J]. Curr Opin Cardiol, 2010, 25(3): 276-281. DOI: 10.1097/HCO.0b013e3283383d1d.
[38]
HUTCHINGS D, SANKARANARAYANAN R, VENETUCCI L. Ventricular arrhythmias complicating hypertrophic cardiomyopathy[J]. Br J Hosp Med, 2012, 73(9): 502-508. DOI: 10.12968/hmed.2012.73.9.502.
[39]
YIN L, XU H Y, ZHENG S S, et al. 3.0T magnetic resonance myocardial perfusion imaging for semi-quantitative evaluation of coronary microvascular dysfunction in hypertrophic cardiomyopathy[J]. Int J Cardiovasc Imaging, 2017, 33(12): 1949-1959. DOI: 10.1007/s10554-017-1189-9.
[40]
ABULAITI A, ZHANG Q, HUANG H Y, et al. The value of the cardiac magnetic resonance intravoxel incoherent motion technique in evaluating microcirculatory dysfunction in hypertrophic cardiomyopathy[J/OL]. J Interv Cardiol, 2023, 2023: 4611602 [2023-10-26]. https://pubmed.ncbi.nlm.nih.gov/37415784/. DOI: 10.1155/2023/4611602.
[41]
SCHLITTLER M, PRAMSTALLER P P, ROSSINI A, et al. Myocardial fibrosis in hypertrophic cardiomyopathy: a perspective from fibroblasts[J/OL]. Int J Mol Sci, 2023, 24(19): 14845 [2023-10-26]. https://pubmed.ncbi.nlm.nih.gov/37834293/. DOI: 10.3390/ijms241914845.
[42]
PARK C S, RHEE T M, LEE H J, et al. Prognostic and safety implications of renin-angiotensin-aldosterone system inhibitors in hypertrophic cardiomyopathy: a real-world observation over 2, 000 patients[J]. Korean Circ J, 2023, 53(9): 606-618. DOI: 10.4070/kcj.2023.0035.
[43]
DAS A, KELLY C, TEH I, et al. Phenotyping hypertrophic cardiomyopathy using cardiac diffusion magnetic resonance imaging: the relationship between microvascular dysfunction and microstructural changes[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(3): 352-362. DOI: 10.1093/ehjci/jeab210.
[44]
ZHOU X L, ZHAO X Y, ZHAO X X. Study of T1 and T2 values in myocardium of hypertrophic cardiomyopathy with normal ejection fraction[J]. Adv Cardiovasc Dis, 2021, 42(9): 845-848. DOI: 10.16806/j.cnki.issn.1004-3934.2021.09.019.
[45]
QIAO J H, ZHAO P J, LU J Y, et al. Diastolic dysfunction assessed by cardiac magnetic resonance imaging tissue tracking on normal-thickness wall segments in hypertrophic cardiomyopathy[J]. BMC Med Imaging, 2023, 23(1): 7 [2023-10-26]. https://pubmed.ncbi.nlm.nih.gov/36624416/. DOI: 10.1186/s12880-022-00955-7.

PREV Study on quantitative assessment of left ventricular dysfunction in patients with COPD by cardiovascular magnetic resonance feature tracking
NEXT Predictive value of multimodal MRI histology for mediastinal lymph node metastasis in non-small cell lung cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn