Share:
Share this content in WeChat
X
Clinical Article
The value of whole-volume ADC histogram analysis combined with ADC value in preoperatively prediction of tumor deposits in rectal cancer
FENG Feiwen  LIU Yuanqing  HU Su  HU Chunhong 

Cite this article as: FENG F W, LIU Y Q, HU S, et al. The value of whole-volume ADC histogram analysis combined with ADC value in preoperatively prediction of tumor deposits in rectal cancer[J]. Chin J Magn Reson Imaging, 2024, 15(4): 88-92. DOI:10.12015/issn.1674-8034.2024.04.014.


[Abstract] Objective To explore the value of tumoral whole-volume apparent diffusion coefficient (ADC) histogram parameters combined with ADC value in preoperative prediction of tumor deposits (TDs) in rectal cancer.Materials and Methods The clinical and radiological data of 111 patients with pathologically confirmed rectal cancer who underwent preoperative rectal MRI examinations from June 2016 to June 2023 were retrospectively analyzed. The patients were grouped as TDs-positive group (n=30) and TDs-negative group (n=81) according to the pathological results. ROI was manually delineated on each slice of the tumor on the ADC images and histogram parameterswere obtained, including the ADC10%, ADC90%, maximum value (ADCmax), minimum value (ADCmin), mean value (ADCmean), median value (ADCmedian), kurtosis, and skewness. And the ADC value of the largest level of the tumor was measured. The differences in ADC value and ADC histogram parameters between the two groups were compared. A combined model was constructed based on factors with statistically significant differences using multivariate logistic regression analysis. Receiver operating characteristic curve (ROC) analysis was used to analyze the predictive performance of ADC value, whole-volume ADC histogram parameters, and the combined model. DeLong test was used to compare the differences of AUCs.Results The ADC value, ADC10%, ADC90%, ADCmax, ADCmean, ADCmedian, and kurtosis were statistically different between the TDs-positive and TDs-negative groups (P<0.05). ADC90% had the highest predictive performance with an AUC of 0.778 (sensitivity, 80.0%; specificity, 65.4%). The diagnostic performance of the combined model (AUC, 0.940; sensitivity, 86.7%; specificity, 93.8%) was superior to that of ADC value alone (AUC, 0.645) and whole-volume ADC histogram parameters (AUC ranging from 0.649 to 0.778) (P<0.05).Conclusions Whole-volume ADC histogram parameters and the ADC value of the largest level of tumor can be used for preoperative prediction of TDs in rectal cancer, and the combined model can improve the predictive performance.
[Keywords] gastrointestinal neoplasms;rectal cancer;tumor deposits;diffusion-weighted imaging;histogram;magnetic resonance imaging

FENG Feiwen1   LIU Yuanqing1, 2   HU Su1, 2*   HU Chunhong1, 2  

1 Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China

2 Institute of Medical Imaging, Soochow University, Suzhou 215006, China

Corresponding author: HU S, E-mail: husu@suda.edu.cn

Conflicts of interest   None.

Received  2023-10-13
Accepted  2024-03-21
DOI: 10.12015/issn.1674-8034.2024.04.014
Cite this article as: FENG F W, LIU Y Q, HU S, et al. The value of whole-volume ADC histogram analysis combined with ADC value in preoperatively prediction of tumor deposits in rectal cancer[J]. Chin J Magn Reson Imaging, 2024, 15(4): 88-92. DOI:10.12015/issn.1674-8034.2024.04.014.

[1]
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2016[J]. CA A Cancer J Clin, 2016, 66(1): 7-30. DOI: 10.3322/caac.21332.
[2]
WEISER M R. AJCC 8th edition: colorectal cancer[J]. Ann Surg Oncol, 2018, 25(6): 1454-1455. DOI: 10.1245/s10434-018-6462-1.
[3]
LORD A C, D'SOUZA N, PUCHER P H, et al. Significance of extranodal tumour deposits in colorectal cancer: a systematic review and meta-analysis[J]. Eur J Cancer, 2017, 82: 92-102. DOI: 10.1016/j.ejca.2017.05.027.
[4]
MIRKIN K A, KULAYLAT A S, HOLLENBEAK C S, et al. Prognostic significance of tumor deposits in stage Ⅲ colon cancer[J]. Ann Surg Oncol, 2018, 25(11): 3179-3184. DOI: 10.1245/s10434-018-6661-9.
[5]
NAGTEGAAL I D, KNIJN N, HUGEN N, et al. Tumor deposits in colorectal cancer: improving the value of modern staging-a systematic review and meta-analysis[J]. J Clin Oncol, 2017, 35(10): 1119-1127. DOI: 10.1200/JCO.2016.68.9091.
[6]
CHINESE SOCIETY OF CLINICAL ONCOLOGY CSCO DIAGNOSIS AND TREATMENT GUIDELINES FOR COLORECTAL CANCER WORKING GROUP. Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for colorectal cancer 2018 (English version)[J]. Chin J Cancer Res, 2019, 31(1): 117-134. DOI: 10.21147/j.issn.1000-9604.2019.01.07.
[7]
BAI R, TAN Y N, LI D, et al. Development and validation of a novel prognostic nomogram including tumor deposits could better predict survival for colorectal cancer: a population-based study[J/OL]. Ann Transl Med, 2021, 9(8): 620 [2023-09-25]. https://pubmed.ncbi.nlm.nih.gov/33987318/. DOI: 10.21037/atm-20-4728.
[8]
COHEN R, SHI Q, MEYERS J, et al. Combining tumor deposits with the number of lymph node metastases to improve the prognostic accuracy in stage Ⅲ colon cancer: a post hoc analysis of the CALGB/SWOG 80702 phase Ⅲ study (Alliance)[J]. Ann Oncol, 2021, 32(10): 1267-1275. DOI: 10.1016/j.annonc.2021.07.009.
[9]
XU Q Y, XU Y Y, WANG J, et al. Distinguishing mesorectal tumor deposits from metastatic lymph nodes by using diffusion-weighted and dynamic contrast-enhanced magnetic resonance imaging in rectal cancer[J]. Eur Radiol, 2023, 33(6): 4127-4137. DOI: 10.1007/s00330-022-09328-8.
[10]
YUAN Y, CHEN X L, LI Z L, et al. The application of apparent diffusion coefficients derived from intratumoral and peritumoral zones for assessing pathologic prognostic factors in rectal cancer[J]. Eur Radiol, 2022, 32(8): 5106-5118. DOI: 10.1007/s00330-022-08717-3.
[11]
KARGOL J, RUDNICKI W, KENIG J, et al. Diffusion-weighted magnetic resonance imaging of 103 patients with rectal adenocarcinoma identifies the apparent diffusion coefficient as an imaging marker for tumor invasion and regional lymph node involvement[J/OL]. Med Sci Monit, 2021, 27: e934941 [2023-09-25]. https://pubmed.ncbi.nlm.nih.gov/34871292/. DOI: 10.12659/MSM.934941.
[12]
LAMBREGTS D M, BEETS G L, MAAS M, et al. Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability[J]. Eur Radiol, 2011, 21(12): 2567-2574. DOI: 10.1007/s00330-011-2220-5.
[13]
FANG S B, ZHU Y F, WANG S W. Apparent diffusion coefficient histogram analysis and its application in evaluation of tumors[J]. Int J Med Radiol, 2021, 44(6): 706-711. DOI: 10.19300/j.2021.Z18850.
[14]
MA X L, REN X J, SHEN M H, et al. Volumetric ADC histogram analysis for preoperative evaluation of LVSI status in stage I endometrioid adenocarcinoma[J]. Eur Radiol, 2022, 32(1): 460-469. DOI: 10.1007/s00330-021-07996-6.
[15]
WANG Q, ZHANG L, LI S, et al. Histogram analysis based on apparent diffusion coefficient maps of bone marrow in multiple myeloma: an independent predictor for high-risk patients classified by the revised international staging system[J/OL]. Acad Radiol, 2022, 29(6): e98-e107 [2023-09-25]. https://pubmed.ncbi.nlm.nih.gov/34452820/. DOI: 10.1016/j.acra.2021.07.010.
[16]
ZHU Y J, WANG Y, TAO X F, et al. Utility of apparent diffusion coefficient histogram analysis in differentiating benign and malignant palate lesions[J/OL]. Eur J Radiol, 2022, 157: 110566 [2023-09-25]. https://pubmed.ncbi.nlm.nih.gov/36274361/. DOI: 10.1016/j.ejrad.2022.110566.
[17]
ZHANG K K, ZHENG Y, HUANG H L, et al. Preliminary study on predicting pathological staging and immunohistochemical markers of rectal cancer based on ADC histogram analysis[J]. Acad Radiol, 2021, 28(Suppl 1): S184-S191. DOI: 10.1016/j.acra.2021.02.004.
[18]
XU Y Y, XU Q Y, SUN H L, et al. Could IVIM and ADC help in predicting the KRAS status in patients with rectal cancer?[J]. Eur Radiol, 2018, 28(7): 3059-3065. DOI: 10.1007/s00330-018-5329-y.
[19]
YANG L Q, QIU M, XIA C C, et al. Value of high-resolution DWI in combination with texture analysis for the evaluation of tumor response after preoperative chemoradiotherapy for locally advanced rectal cancer[J]. AJR Am J Roentgenol, 2019, 212(6): 1279-1286. DOI: 10.2214/AJR.18.20689.
[20]
ZHOU Y, YANG R, WANG Y, et al. Histogram analysis of diffusion-weighted magnetic resonance imaging as a biomarker to predict LNM in T3 stage rectal carcinoma[J/OL]. BMC Med Imaging, 2021, 21(1): 176 [2023-09-30]. https://pubmed.ncbi.nlm.nih.gov/34809615/. DOI: 10.1186/s12880-021-00706-0.
[21]
DONG L J, ZHANG L, GAO X Y, et al. Clinical application of whole-volume apparent diffusion coefficient histogram parameters of histological grading rectal adenocarcinoma[J]. Chin J Magn Reson Imag, 2022, 13(7): 48-54. DOI: 10.12015/issn.1674-8034.2022.07.009.
[22]
JIMÉNEZ DE LOS SANTOS M E, REYES-PÉREZ J A, DOMÍNGUEZ OSORIO V, et al. Whole lesion histogram analysis of apparent diffusion coefficient predicts therapy response in locally advanced rectal cancer[J]. World J Gastroenterol, 2022, 28(23): 2609-2624. DOI: 10.3748/wjg.v28.i23.2609.
[23]
HONG Y, SONG G S, JIA Y P, et al. Predicting tumor deposits in patients with rectal cancer: using the models of multiple mathematical parameters derived from diffusion-weighted imaging[J/OL]. Eur J Radiol, 2022, 157: 110573 [2023-09-30]. https://pubmed.ncbi.nlm.nih.gov/36347167/. DOI: 10.1016/j.ejrad.2022.110573.
[24]
ZOU X L, LUO Y, LI Z, et al. Volumetric apparent diffusion coefficient histogram analysis in differentiating intrahepatic mass-forming cholangiocarcinoma from hepatocellular carcinoma[J]. J Magn Reson Imaging, 2019, 49(4): 975-983. DOI: 10.1002/jmri.26253.
[25]
WANG C, MENG Y K, CUI Y Y, et al. The value of enhancement CT and clinicopathologic characteristics for predicting colon cancer tumor deposits[J]. J Clin Radiol, 2020, 39(8): 1537-1542. DOI: 10.13437/j.cnki.jcr.2020.08.018.
[26]
EOM H J, CHA J H, CHOI W J, et al. Predictive clinicopathologic and dynamic contrast-enhanced MRI findings for tumor response to neoadjuvant chemotherapy in triple-negative breast cancer[J]. AJR Am J Roentgenol, 2017, 208(6): W225-W230. DOI: 10.2214/AJR.16.17125.
[27]
LIU H L, ZONG M, WEI H, et al. Preoperative predicting malignancy in breast mass-like lesions: value of adding histogram analysis of apparent diffusion coefficient maps to dynamic contrast-enhanced magnetic resonance imaging for improving confidence level[J/OL]. Br J Radiol, 2017, 90(1079): 20170394 [2023-09-30]. https://pubmed.ncbi.nlm.nih.gov/28876982/. DOI: 10.1259/bjr.20170394.

PREV Value of multimodal radiomics nomogram in predicting axillary lymph node metastasis in invasive ductal carcinoma of the breast before surgery
NEXT Predicting malignancy of PI-RADS 4-5 lesions with radiomics features based on multiparametric magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn