Share:
Share this content in WeChat
X
Original Article
7.0 T magnetic resonance imaging evaluation of left ventricular function improvement in rats with pulmonary arterial hypertension in the Qinghai-Tibet Plateau environment following sodium selenite administration: A preliminary study
YIN Hongke  LIANG Boshen  CHEN Haotian  WANG Lei  ZHAO Sisi  FANG Xin  GAO Fabao 

Cite this article as: YIN H K, LIANG B S, CHEN H T, et al. 7.0 T magnetic resonance imaging evaluation of left ventricular function improvement in rats with pulmonary arterial hypertension in the Qinghai-Tibet Plateau environment following sodium selenite administration: A preliminary study[J]. Chin J Magn Reson Imaging, 2024, 15(4): 126-132. DOI:10.12015/issn.1674-8034.2024.04.020.


[Abstract] Objective To assess the improvement of sodium selenite (SE) on left ventricular function after pulmonary arterial hypertension (PAH) in a high-altitude hypoxic environment using cardiac magnetic resonance tissue tracking (CMR-TT). At the same time, the potential mechanism of SE improving left ventricular function after PAH was preliminarily explored.Materials and Methods Forty-six male SD rats were relocated overland from Chengdu (altitude 500 m) to the Plateau Animal Laboratory in Yushu Tibetan Autonomous Prefecture, Qinghai Province (altitude 4250 m) the day following their acquisition. Subsequently, they were randomly assigned to one of three groups: a control group (n=10), a model group treated with monocrotaline (MCT) (MCT group, n=20), and a treatment group (SE group, n=16). After being raised in a hypoxic environment for 28 weeks, both the MCT and SE groups of rats were administered a one-time intraperitoneal injection of 60 mg/kg MCT to establish the PAH model, whereas the control group received an equivalent volume of saline injection. One week later, rats in the SE group were treated with 0.7 mg/kg of SE via oral gavage for a continuous period of one month, while the control group and MCT group were kept on routine feeding. Upon completion of the intervention, the rats were transported back to Chengdu where 8 rats from each of the three groups were randomly selected for CMR imaging to assess left ventricular function, strain, and T2 relaxation time. After completing the CMR scan, heart tissue and blood samples are collected from the rat for respective pathological and biochemical analysis.Results Compared with control group, MCT group of left ventricular ejection fraction (LVEF) (61.36%±4.50%) and left ventricular global circumferential strain (LVGCS) (-19.81%±0.84%) were significantly decreased (all P<0.05). However, LVEF (75.29%±5.67%), left ventricular global radial strain (LVGRS) (42.90%±5.94%), and LVGCS (-21.43%±1.33%) were significantly higher in the SE group compared with the MCT group (all P<0.05). The results showed that SE treatment improved left ventricular function after PAH. The levels of serum glutathione peroxidase (GSH-Px) in the control and MCT groups were statistically significant [control group vs. MCT group: (16 544.38±3 734.02) U/mL vs. (9 974.00±900.80) U/mL, P<0.05], serum malondialdehyde (MDA) increased in MCT group compared to control group [MCT group vs. control group: 9.00 (7.60, 13.20) μmol/L vs. 3.86 (3.60, 6.20) μmol/L, P<0.01], suggesting that the antioxidant capacity of rats in MCT group decreased. After SE intervention, rats in the SE group exhibited increased serum levels of superoxide dismutase (SOD) ( 292.60±44.38) U/mL and GSH-Px (17 843.26±3 585.44) U/mL as well as decreased MDA levels [5.37 (5.10, 6.20) μmol/L] (all P<0.05). The apoptosis staining showed that the relative fluorescence intensity of the left ventricle of MCT was significantly higher compared with that of control group (P<0.001), whereas SE treatment resulted in a significant decrease in the relative fluorescence intensity of apoptosis staining in the SE group compared with that of the MCT group (P<0.001).Conclusions The CMR-TT technique enables the quantitative evaluation of left ventricular functional abnormalities following pulmonary arterial hypertension. SE can improve left ventricular function after PAH in hypoxic environment, which may be related to increasing antioxidant capacity and alleviating left ventricular cardiomyocyte apoptosis.
[Keywords] pulmonary arterial hypertension;left ventricular cardiac function;high-altitude hypoxic environment;sodium selenite;rat;magnetic resonance imaging

YIN Hongke1   LIANG Boshen2   CHEN Haotian1   WANG Lei2   ZHAO Sisi1   FANG Xin1   GAO Fabao1*  

1 Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China

2 Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu 610041, China

Corresponding author: GAO F B, E-mail: gaofabao@wchscu.cn

Conflicts of interest   None.

Received  2023-12-29
Accepted  2024-03-29
DOI: 10.12015/issn.1674-8034.2024.04.020
Cite this article as: YIN H K, LIANG B S, CHEN H T, et al. 7.0 T magnetic resonance imaging evaluation of left ventricular function improvement in rats with pulmonary arterial hypertension in the Qinghai-Tibet Plateau environment following sodium selenite administration: A preliminary study[J]. Chin J Magn Reson Imaging, 2024, 15(4): 126-132. DOI:10.12015/issn.1674-8034.2024.04.020.

[1]
RUNO J R, LOYD J E. Primary pulmonary hypertension[J]. Lancet, 2003, 361(9368): 1533-1544. DOI: 10.1016/s0140-6736(03)13167-4.
[2]
DORFMÜLLER P. Pulmonary hypertension: pathology[J/OL]. Handb Exp Pharmacol, 2013, 218: 59-75 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/24092336/. DOI: 10.1007/978-3-642-38664-0_3.
[3]
HUMBERT M, LAU E M T, MONTANI D, et al. Advances in therapeutic interventions for patients with pulmonary arterial hypertension[J]. Circulation, 2014, 130(24): 2189-2208. DOI: 10.1161/CIRCULATIONAHA.114.006974.
[4]
PERROS F, DE MAN F S, BOGAARD H J, et al. Use of β-blockers in pulmonary hypertension[J/OL]. Circ Heart Fail, 2017, 10(4): e003703 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/28364092/. DOI: 10.1161/CIRCHEARTFAILURE.116.003703.
[5]
NAYAKANTI S R, FRIEDRICH A, SARODE P, et al. Targeting wnt-ß-catenin-FOSL signaling ameliorates right ventricular remodeling[J]. Circ Res, 2023, 132(11): 1468-1485. DOI: 10.1161/CIRCRESAHA.122.321725.
[6]
VONK NOORDEGRAAF A, WESTERHOF B E, WESTERHOF N. The relationship between the RightVentricle and its load in PulmonaryHypertension[J]. J Am Coll Cardiol, 2017, 69(2): 236-243. DOI: 10.1016/j.jacc.2016.10.047.
[7]
MARCUS J T, GAN C T, ZWANENBURG J J, et al. Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling[J]. J Am Coll Cardiol, 2008, 51(7): 750-757. DOI: 10.1016/j.jacc.2007.10.041.
[8]
MA H, LIU X F, QI X Q, et al. Evaluation of left ventricular diastolic function by 2-D speckle tracking echocardiography in patients with connective tissue disease-associated pulmonary artery hypertension[J]. Ultrasound Med Biol, 2021, 47(4): 910-918. DOI: 10.1016/j.ultrasmedbio.2020.09.020.
[9]
SUN Y Z, WAN W G, ZHAO X, et al. Chronic Sigma 1 receptor activation alleviates right ventricular dysfunction secondary to pulmonary arterial hypertension[J]. Bioengineered, 2022, 13(4): 10843-10856. DOI: 10.1080/21655979.2022.2065953.
[10]
RAYMAN M P. The importance of selenium to human health[J]. Lancet, 2000, 356(9225): 233-241. DOI: 10.1016/S0140-6736(00)02490-9.
[11]
ELHODAKY M, DIAMOND A M. Selenium-binding protein 1 in human health and disease[J/OL]. Int J Mol Sci, 2018, 19(11): 3437 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/30400135/. DOI: 10.3390/ijms19113437.
[12]
KIKUCHI N, SATOH K, KUROSAWA R, et al. Selenoprotein P promotes the development of pulmonary arterial hypertension: possible novel therapeutic target[J]. Circulation, 2018, 138(6): 600-623. DOI: 10.1161/CIRCULATIONAHA.117.033113.
[13]
AKBARALY N T, ARNAUD J, HININGER-FAVIER I, et al. Selenium and mortality in the elderly: results from the EVA study[J]. Clin Chem, 2005, 51(11): 2117-2123. DOI: 10.1373/clinchem.2005.055301.
[14]
DHANYA B L, SWATHY R P, INDIRA M. Selenium downregulates oxidative stress-induced activation of leukotriene pathway in experimental rats with diabetic cardiac hypertrophy[J]. Biol Trace Elem Res, 2014, 161(1): 107-115. DOI: 10.1007/s12011-014-0076-7.
[15]
ZHOU H H, WANG T, LI Q, et al. Prevention of Keshan disease by selenium supplementation: a systematic review and meta-analysis[J]. Biol Trace Elem Res, 2018, 186(1): 98-105. DOI: 10.1007/s12011-018-1302-5.
[16]
OKUNO T, HONDA E, ARAKAWA T, et al. Glutathione-dependent cell cycle G1 arrest and apoptosis induction in human lung cancer A549 cells caused by methylseleninic acid: comparison with sodium selenite[J]. Biol Pharm Bull, 2014, 37(11): 1831-1837. DOI: 10.1248/bpb.b14-00453.
[17]
CHOI J A, LEE E H, CHO H, et al. High-dose selenium induces ferroptotic cell death in ovarian cancer[J/OL]. Int J Mol Sci, 2023, 24(3): 1918 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/36768241/. DOI: 10.3390/ijms24031918.
[18]
XU X, HOU Y Q, LIN S M, et al. Sodium selenite inhibits proliferation of lung cancer cells by inhibiting NF-κB nuclear translocation and down-regulating PDK1 expression which is a key enzyme in energy metabolism expression[J/OL]. J Trace Elem Med Biol, 2023, 78: 127147 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/36963369/. DOI: 10.1016/j.jtemb.2023.127147.
[19]
ABEDELAHI A, SALEHNIA M, ALLAMEH A A, et al. Sodium selenite improves the in vitro follicular development by reducing the reactive oxygen species level and increasing the total antioxidant capacity and glutathione peroxide activity[J]. Hum Reprod, 2010, 25(4): 977-985. DOI: 10.1093/humrep/deq002.
[20]
CAI C H, WU Y H, YANG L B, et al. Sodium selenite attenuates balloon injury-induced and monocrotaline-induced vascular remodeling in rats[J/OL]. Front Pharmacol, 2021, 12: 618493 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/33790787/. DOI: 10.3389/fphar.2021.618493.
[21]
HOEPER M M, BADESCH D B, GHOFRANI H A, et al. Phase 3 trial of sotatercept for treatment of pulmonary arterial hypertension[J]. N Engl J Med, 2023, 388(16): 1478-1490. DOI: 10.1056/NEJMoa2213558.
[22]
MOUTSOGLOU D M, TATAH J, PRISCO S Z, et al. Pulmonary arterial hypertension patients have a proinflammatory gut microbiome and altered circulating microbial metabolites[J]. Am J Respir Crit Care Med, 2023, 207(6): 740-756. DOI: 10.1164/rccm.202203-0490OC.
[23]
ZHANG M, ZENG Q, ZHOU S, et al. Mendelian randomization study on causal association of IL-6 signaling with pulmonary arterial hypertension[J/OL]. Clin Exp Hypertens, 2023, 45(1): 2183963 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/36871578/. DOI: 10.1080/10641963.2023.2183963.
[24]
SYDYKOV A, MAMAZHAKYPOV A, MARIPOV A, et al. Pulmonary hypertension in acute and chronic high altitude maladaptation disorders[J/OL]. Int J Environ Res Public Health, 2021, 18(4): 1692 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/33578749/. DOI: 10.3390/ijerph18041692.
[25]
TRATTNIG S, SPRINGER E, BOGNER W, et al. Key clinical benefits of neuroimaging at 7T[J/OL]. NeuroImage, 2018, 168: 477-489 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/27851995/. DOI: 10.1016/j.neuroimage.2016.11.031.
[26]
ZHANG H Y, ZHU L Y, ZHAO S H, et al. Research progresses of cardiac magnetic resonance in 2022[J]. Chin J Magn Reson Imag, 2023, 14(6): 133-138, 144. DOI: 10.12015/issn.1674-8034.2023.06.024.
[27]
MAVROGENI S, PEPE A, GARGANI L, et al. Cardiac inflammation and fibrosis patterns in systemic sclerosis, evaluated by magnetic resonance imaging: an update[J/OL]. Semin Arthritis Rheum, 2023, 58: 152126 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/36434895/. DOI: 10.1016/j.semarthrit.2022.152126.
[28]
NIE X R, WU Z H, SHANG J Y, et al. Curcumol suppresses endothelial-to-mesenchymal transition via inhibiting the AKT/GSK3β signaling pathway and alleviates pulmonary arterial hypertension in rats[J/OL]. Eur J Pharmacol, 2023, 943: 175546 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/36706802/. DOI: 10.1016/j.ejphar.2023.175546.
[29]
HOU C L, XIE L J, WANG T X, et al. Comparative transcription profiling of mRNA and lncRNA in pulmonary arterial hypertension after C75 treatment[J/OL]. BMC Pulm Med, 2023, 23(1): 46 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/36717804/. DOI: 10.1186/s12890-023-02334-6.
[30]
BARAŃSKA-PAWEŁCZAK K, WOJCIECHOWSKA C, JACHEĆ W. Diagnostic and predictive value of right heart catheterization-derived measurements in pulmonary hypertension[J]. Wiad Lek, 2021, 74(3 cz 1): 546-553.
[31]
CAI Z Y, LI J, ZHUANG Q, et al. MiR-125a-5p ameliorates monocrotaline-induced pulmonary arterial hypertension by targeting the TGF-β1 and IL-6/STAT3 signaling pathways[J]. Exp Mol Med, 2018, 50(4): 1-11. DOI: 10.1038/s12276-018-0068-3.
[32]
AL-QAZAZI R, LIMA P D A, PRISCO S Z, et al. Macrophage-NLRP3 activation promotes right ventricle failure in pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2022, 206(5): 608-624. DOI: 10.1164/rccm.202110-2274OC.
[33]
HINDMARCH C C T, TIAN L, XIONG P Y, et al. An integrated proteomic and transcriptomic signature of the failing right ventricle in monocrotaline induced pulmonary arterial hypertension in male rats[J/OL]. Front Physiol, 2022, 13: 966454 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/36388115/. DOI: 10.3389/fphys.2022.966454.
[34]
WONG C K, DITE G S, SPAETH E, et al. Melanoma risk prediction based on a polygenic risk score and clinical risk factors[J]. Melanoma Res, 2023, 33(4): 293-299. DOI: 10.1097/CMR.0000000000000896.
[35]
PI H Y, XIA L, RALPH D D, et al. Metabolomic signatures associated with pulmonary arterial hypertension outcomes[J]. Circ Res, 2023, 132(3): 254-266. DOI: 10.1161/CIRCRESAHA.122.321923.
[36]
O'BRIEN A T, GIL K E, VARGHESE J, et al. T2 mapping in myocardial disease: a comprehensive review[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 33 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/35659266/. DOI: 10.1186/s12968-022-00866-0.
[37]
CHAMBERLIN J H, KOCHER M R, AQUINO G, et al. Quantitative myocardial T2 mapping adds value to Japanese circulation society diagnostic criteria for active cardiac sarcoidosis[J]. Int J Cardiovasc Imaging, 2023, 39(8): 1535-1546. DOI: 10.1007/s10554-023-02863-5.
[38]
SUNTHANKAR S D, GEORGE-DURRETT K, CRUM K, et al. Comprehensive cardiac magnetic resonance T1, T2, and extracellular volume mapping to define Duchenne cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 44 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/37517994/. DOI: 10.1186/s12968-023-00951-y.
[39]
ICHIMURA K, SANTANA E J, KUZNETSOVA T, et al. Novel left ventricular mechanical index in pulmonary arterial hypertension[J/OL]. Pulm Circ, 2023, 13(2): e12216 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/37063750/. DOI: 10.1002/pul2.12216.
[40]
RADCHENKO G D, BOTSIUK Y A, SIRENKO Y M. Ventricular function and cardio-ankle vascular index in patients with pulmonary artery hypertension[J/OL]. Vasc Health Risk Manag, 2022, 18: 889-904 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/36597509/. DOI: 10.2147/VHRM.S385536.
[41]
WANG M M, ZHANG X H, JIA W Y, et al. Circulating glutathione peroxidase and superoxide dismutase levels in patients with epilepsy: a meta-analysis[J/OL]. Seizure, 2021, 91: 278-286 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/34252880/. DOI: 10.1016/j.seizure.2021.07.001.
[42]
CORDIANO R, GIOACCHINO M D, MANGIFESTA R, et al. Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: an update[J/OL]. Molecules, 2023, 28(16): 5979 [2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/37630231/. DOI: 10.3390/molecules28165979.

PREV Experimental study on expression of TGF-β1 in fibrotic myocardium of rat by magnatic resonance targeted imaging
NEXT Application of head enhanced T1WI sequences based on deep learning reconstruction technology in the transformation of pituitary neuroendocrine neoplasms
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn