Share:
Share this content in WeChat
X
Review
Application of multi-contrast quantitative MR imaging in central nervous system
MIAO Jiali  WAN Xinyue  FU Junyan  ZHANG Jun 

Cite this article as: MIAO J L, WAN X Y, FU J Y, et al. Application of multi-contrast quantitative MR imaging in central nervous system[J]. Chin J Magn Reson Imaging, 2024, 15(4): 165-170. DOI:10.12015/issn.1674-8034.2024.04.027.


[Abstract] Multi-contrast quantitative MRI is one of the most popular MRI techniques who have been made many advances in the research of neuroimaging, mainly including the imagings based on magnetic resonance image compilation (MAGiC) sequence, multiple parametric (MTP) synthetic sequence and strategically acquired gradient echo (STAGE) sequence, etc. They can obtain multiple contrast and quantitative images in a single scan, and the scanning time is significantly shorter than that of the conventional MRI. At the same time, as a three-dimensional sequence, MTP synthetic sequence integrates a variety of current advanced technologies to ensure high signal-to-noise ratio and high resolution of the images. This article reviews the principle and research progress in the central nervous system, advantages and limitations of multi-contrast quantitative MRI, aiming to provide reference for interested scholars and promote its further research and clinical application.
[Keywords] central nervous system;magnetic resonance imaging;multi-contrast magnetic resonance imaging;magnetic resonance image compilation sequence;multiple parametric synthetic sequence

MIAO Jiali   WAN Xinyue   FU Junyan   ZHANG Jun*  

Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China

Corresponding author: ZHANG J, E-mail: zhangjun_zj@fudan.edu.cn

Conflicts of interest   None.

Received  2024-01-22
Accepted  2024-03-21
DOI: 10.12015/issn.1674-8034.2024.04.027
Cite this article as: MIAO J L, WAN X Y, FU J Y, et al. Application of multi-contrast quantitative MR imaging in central nervous system[J]. Chin J Magn Reson Imaging, 2024, 15(4): 165-170. DOI:10.12015/issn.1674-8034.2024.04.027.

[1]
HAGIWARA A, WARNTJES M, HORI M, et al. SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement[J]. Invest Radiol, 2017, 52(10): 647-657. DOI: 10.1097/RLI.0000000000000365.
[2]
JARA H, SAKAI O, FARRHER E, et al. Primary multiparametric quantitative brain MRI: state-of-the-art relaxometric and proton density mapping techniques[J]. Radiology, 2022, 305(1): 5-18. DOI: 10.1148/radiol.211519.
[3]
YE Y Q, LYU J Y, HU Y C, et al. MULTI-parametric MR imaging with fLEXible design (MULTIPLEX)[J]. Magn Reson Med, 2022, 87(2): 658-673. DOI: 10.1002/mrm.28999.
[4]
HAGIWARA A, HORI M, COHEN-ADAD J, et al. Linearity, bias, intrascanner repeatability, and interscanner reproducibility of quantitative multidynamic multiecho sequence for rapid simultaneous relaxometry at 3 T: a validation study with a standardized phantom and healthy controls[J]. Invest Radiol, 2019, 54(1): 39-47. DOI: 10.1097/RLI.0000000000000510.
[5]
MA D, GULANI V, SEIBERLICH N, et al. Magnetic resonance fingerprinting[J]. Nature, 2013, 495: 187-192. DOI: 10.1038/nature11971.
[6]
TANENBAUM L N, TSIOURIS A J, JOHNSON A N, et al. Synthetic MRI for clinical neuroimaging: results of the magnetic resonance image compilation (MAGiC) prospective, multicenter, multireader trial[J]. AJNR Am J Neuroradiol, 2017, 38(6): 1103-1110. DOI: 10.3174/ajnr.A5227.
[7]
BERNHARDT B C, FADAIE F, DE WAEL R VOS, et al. Preferential susceptibility of limbic cortices to microstructural damage in temporal lobe epilepsy: a quantitative T1 mapping study[J]. Neuroimage, 2018, 182: 294-303. DOI: 10.1016/j.neuroimage.2017.06.002.
[8]
LI J Q, LIN H M, LIU T, et al. Quantitative susceptibility mapping (QSM) minimizes interference from cellular pathology in R2* estimation of liver iron concentration[J]. J Magn Reson Imaging, 2018, 48(4): 1069-1079. DOI: 10.1002/jmri.26019.
[9]
TSAI P H, WONG C C, CHAN W P. Radial T2* mapping reveals early meniscal abnormalities in patients with knee osteoarthritis[J]. Eur Radiol, 2022, 32(8): 5642-5649. DOI: 10.1007/s00330-022-08641-6.
[10]
ZHAO R M, DU S Y, GAO S, et al. Time course changes of synthetic relaxation time during neoadjuvant chemotherapy in breast cancer: the optimal parameter for treatment response evaluation[J]. J Magn Reson Imaging, 2023, 58(4): 1290-1302. DOI: 10.1002/jmri.28597.
[11]
NI Y B, TIAN Z R, YANG J P, et al. Magnetic resonance image compilation in the assessment of chronic supraspinatus tendinitis[J]. Chin J Magn Reson Imag, 2022, 13(9): 53-57, 68. DOI: 10.12015/issn.1674-8034.2022.09.010.
[12]
LI Q X, TANG H J, TANG Y J, et al. Assessment of display effect and image quality of synthetic magnetic resonance imaging for collateral branch artery after arterial occlusion in acute ischemic stroke[J]. J N Med, 2023, 54(11): 787-792. DOI: 10.3969/j.issn.0253-9802.2023.11.005.
[13]
RYU K H, BAEK H J, MOON J I, et al. Initial clinical experience of synthetic MRI as a routine neuroimaging protocol in daily practice: a single-center study[J]. J De Neuroradiol, 2020, 47(2): 151-160. DOI: 10.1016/j.neurad.2019.03.002.
[14]
JI S, YANG D J, LEE J, et al. Synthetic MRI: technologies and applications in neuroradiology[J]. J Magn Reson Imag, 2022, 55(4): 1013-1025. DOI: 10.1002/jmri.27440.
[15]
WANG Y, CHEN Y S, WU D M, et al. STrategically Acquired Gradient Echo (STAGE) imaging, part Ⅱ: correcting for RF inhomogeneities in estimating T1 and proton density[J]. Magn Reson Imaging, 2018, 46: 140-150. DOI: 10.1016/j.mri.2017.10.006.
[16]
HAACKE E M, CHEN Y S, UTRIAINEN D, et al. STrategically Acquired Gradient Echo (STAGE) imaging, part Ⅲ: technical advances and clinical applications of a rapid multi-contrast multi-parametric brain imaging method[J]. Magn Reson Imaging, 2020, 65: 15-26. DOI: 10.1016/j.mri.2019.09.006.
[17]
CHEN Y S, LIU S F, WANG Y, et al. STrategically Acquired Gradient Echo (STAGE) imaging, part I: Creating enhanced T1 contrast and standardized susceptibility weighted imaging and quantitative susceptibility mapping[J]. Magn Reson Imaging, 2018, 46: 130-139. DOI: 10.1016/j.mri.2017.10.005.
[18]
FRISCHER J M, WEIGAND S D, GUO Y, et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque[J]. Ann Neurol, 2015, 78(5): 710-721. DOI: 10.1002/ana.24497.
[19]
SACCENTI L, ANDICA C, HAGIWARA A, et al. Brain tissue and myelin volumetric analysis in multiple sclerosis at 3T MRI with various in-plane resolutions using synthetic MRI[J]. Neuroradiology, 2019, 61(11): 1219-1227. DOI: 10.1007/s00234-019-02241-w.
[20]
HAGIWARA A, HORI M, YOKOYAMA K, et al. Utility of a multiparametric quantitative MRI model that assesses myelin and edema for evaluating plaques, periplaque white matter, and normal-appearing white matter in patients with multiple sclerosis: a feasibility study[J]. AJNR Am J Neuroradiol, 2017, 38(2): 237-242. DOI: 10.3174/ajnr.A4977.
[21]
CAO J B, XU X H, ZHU J Y, et al. Rapid quantification of global brain volumetry and relaxometry in patients with multiple sclerosis using synthetic magnetic resonance imaging[J]. Quant Imaging Med Surg, 2022, 12(6): 3104-3114. DOI: 10.21037/qims-21-970.
[22]
KRAJNC N, SCHMIDBAUER V, LEINKAUF J, et al. Paramagnetic rim lesions lead to pronounced diffuse periplaque white matter damage in multiple sclerosis[J]. Mult Scler, 2023, 29(11/12): 1406-1417. DOI: 10.1177/13524585231197954.
[23]
GIULIANO F D, MINOSSE S, PICCHI E, et al. Comparison between synthetic and conventional magnetic resonance imaging in patients with multiple sclerosis and controls[J]. MAGMA, 2020, 33(4): 549-557. DOI: 10.1007/s10334-019-00804-9.
[24]
AYMERICH F X, AUGER C, ALONSO J, et al. Assessment of 2D conventional and synthetic MRI in multiple sclerosis[J]. Neuroradiology, 2022, 64(12): 2315-2322. DOI: 10.1007/s00234-022-02973-2.
[25]
KRAUSS W, GUNNARSSON M, NILSSON M, et al. Conventional and synthetic MRI in multiple sclerosis: a comparative study[J]. Eur Radiol, 2018, 28(4): 1692-1700. DOI: 10.1007/s00330-017-5100-9.
[26]
KONAR A S, SHAH A D, PAUDYAL R, et al. Quantitative synthetic magnetic resonance imaging for brain metastases: a feasibility study[J/OL]. Cancers, 2022, 14(11): 2651 [2024-03-24]. https://pubmed.ncbi.nlm.nih.gov/35681631/. DOI: 10.3390/cancers14112651.
[27]
NUNEZ-GONZALEZ L, VAN GARDEREN K A, SMITS M, et al. Pre-contrast MAGiC in treated gliomas: a pilot study of quantitative MRI[J/OL]. Sci Rep, 2022, 12(1): 21820 [2024-03-24]. https://pubmed.ncbi.nlm.nih.gov/36528673/. DOI: 10.1038/s41598-022-24276-5.
[28]
BLYSTAD I, WARNTJES J B M, SMEDBY Ö, et al. Quantitative MRI using relaxometry in malignant gliomas detects contrast enhancement in peritumoral oedema[J/OL]. Sci Rep, 2020, 10(1): 17986 [2024-03-24]. https://pubmed.ncbi.nlm.nih.gov/33093605/. DOI: 10.1038/s41598-020-75105-6.
[29]
FUJITA S, NAKAZAWA M, HAGIWARA A, et al. Estimation of gadolinium-based contrast agent concentration using quantitative synthetic MRI and its application to brain metastases: a feasibility study[J]. Magn Reson Med Sci, 2019, 18(4): 260-264. DOI: 10.2463/mrms.mp.2018-0119.
[30]
LUDOVICHETTI R, DELATTRE B, BOTO J, et al. Characterization of meningiomas with synthetic imaging[J/OL]. Brain Behav, 2022, 12(11): e2769 [2024-03-24]. https://pubmed.ncbi.nlm.nih.gov/36225121/. DOI: 10.1002/brb3.2769.
[31]
FILICE S, ORTENZIA O, CRISI G. How tissue T1-variability influences DCE-MRI perfusion parameters estimation of recurrent high-grade glioma after surgery followed by radiochemotherapy[J]. Acta Radiol, 2022, 63(9): 1262-1269. DOI: 10.1177/02841851211035911.
[32]
GOUEL P, HAPDEY S, DUMOUCHEL A, et al. Synthetic MRI for radiotherapy planning for brain and prostate cancers: phantom validation and patient evaluation[J/OL]. Front Oncol, 2022, 12: 841761 [2024-03-24]. https://pubmed.ncbi.nlm.nih.gov/35515105/. DOI: 10.3389/fonc.2022.841761.
[33]
WARNTJES M, BLYSTAD I, TISELL A, et al. Synthesizing a contrast-enhancement map in patients with high-grade gliomas based on a postcontrast MR imaging quantification only[J]. AJNR Am J Neuroradiol, 2018, 39(12): 2194-2199. DOI: 10.3174/ajnr.A5870.
[34]
ANDRÉ J, BARRIT S, JISSENDI P. Synthetic MRI for stroke: a qualitative and quantitative pilot study[J/OL]. Sci Rep, 2022, 12(1): 11552 [2024-03-24]. https://pubmed.ncbi.nlm.nih.gov/35798771/. DOI: 10.1038/s41598-022-15204-8.
[35]
LI C W, HSU A L, HUANG C C, et al. Reliability of synthetic brain MRI for assessment of ischemic stroke with phantom validation of a relaxation time determination method[J/OL]. J Clin Med, 2020, 9(6): 1857 [2024-03-24]. https://pubmed.ncbi.nlm.nih.gov/32545907/. DOI: 10.3390/jcm9061857.
[36]
DUCHAUSSOY T, BUDZIK J F, NORBERCIAK L, et al. Synthetic T2 mapping is correlated with time from stroke onset: a future tool in wake-up stroke management?[J]. Eur Radiol, 2019, 29(12): 7019-7026. DOI: 10.1007/s00330-019-06270-0.
[37]
SCHMIDBAUER V U, DOVJAK G O, YILDIRIM M S, et al. Mapping human fetal brain maturation in vivo using quantitative MRI[J]. AJNR Am J Neuroradiol, 2021, 42(11): 2086-2093. DOI: 10.3174/ajnr.A7286.
[38]
SCHMIDBAUER V, DOVJAK G, GEISL G, et al. Impact of prematurity on the tissue properties of the neonatal brain stem: a quantitative MR approach[J]. AJNR Am J Neuroradiol, 2021, 42(3): 581-589. DOI: 10.3174/ajnr.A6945.
[39]
SCHMIDBAUER V U, YILDIRIM M S, DOVJAK G O, et al. Different from the beginning: WM maturity of female and male extremely preterm neonates-a quantitative MRI study[J]. AJNR Am J Neuroradiol, 2022, 43(4): 611-619. DOI: 10.3174/ajnr.A7472.
[40]
SCHMIDBAUER V, GEISL G, DIOGO M, et al. SyMRI detects delayed myelination in preterm neonates[J]. Eur Radiol, 2019, 29(12): 7063-7072. DOI: 10.1007/s00330-019-06325-2.
[41]
KIM E, CHO H H, CHO S H, et al. Accelerated synthetic MRI with deep learning-based reconstruction for pediatric neuroimaging[J]. AJNR Am J Neuroradiol, 2022, 43(11): 1653-1659. DOI: 10.3174/ajnr.A7664.
[42]
SUI H J, YANG J, YAN C G. Clinical prediction of magnetic resonance image compilation in patients with mild cognitive impairment[J]. Int J Dev Neurosci, 2023, 83(1): 16-22. DOI: 10.1002/jdn.10232.
[43]
LOU B H, JIANG Y W, LI C M, et al. Quantitative analysis of synthetic magnetic resonance imaging in Alzheimer's disease[J/OL]. Front Aging Neurosci, 2021, 13: 638731 [2024-03-24]. https://pubmed.ncbi.nlm.nih.gov/33912023/. DOI: 10.3389/fnagi.2021.638731.
[44]
ANDICA C, HAGIWARA A, HORI M, et al. Aberrant myelination in patients with Sturge-Weber syndrome analyzed using synthetic quantitative magnetic resonance imaging[J]. Neuroradiology, 2019, 61(9): 1055-1066. DOI: 10.1007/s00234-019-02250-9.
[45]
CHOUGAR L, HAGIWARA A, TAKANO N, et al. Signal intensity within cerebral venous sinuses on synthetic MRI[J]. Magn Reson Med Sci, 2020, 19(1): 56-63. DOI: 10.2463/mrms.mp.2018-0144.
[46]
ZHANG Y M, HUANG P, WANG X H, et al. Visualizing the deep cerebellar nuclei using quantitative susceptibility mapping: an application in healthy controls, Parkinson's disease patients and essential tremor patients[J]. Hum Brain Mapp, 2023, 44(4): 1810-1824. DOI: 10.1002/hbm.26178.
[47]
LIU Y, LI J C, HE N Y, et al. Optimizing neuromelanin contrast in the substantia nigra and locus coeruleus using a magnetization transfer contrast prepared 3D gradient recalled echo sequence[J/OL]. Neuroimage, 2020, 218: 116935 [2024-03-24]. https://pubmed.ncbi.nlm.nih.gov/32413460/. DOI: 10.1016/j.neuroimage.2020.116935.
[48]
WANG C L, HE N Y, ZHANG Y M, et al. Enhancing Nigrosome-1 Sign Identification via Interpretable AI using True Susceptibility Weighted Imaging[J/OL]. J Magn Reson Imaging, 2024. DOI: 10.1002/jmri.29245.
[49]
BUCH S, SUBRAMANIAN K, CHEN T, et al. Characterization of white matter lesions in multiple sclerosis using proton density and T1-relaxation measures[J]. Magn Reson Imaging, 2024, 106: 110-118. DOI: 10.1016/j.mri.2023.12.004.
[50]
BUCH S, SUBRAMANIAN K, JELLA P K, et al. Revealing vascular abnormalities and measuring small vessel density in multiple sclerosis lesions using USPIO[J/OL]. Neuroimage Clin, 2021, 29: 102525 [2024-03-24]. https://pubmed.ncbi.nlm.nih.gov/33338965/. DOI: 10.1016/j.nicl.2020.102525.
[51]
HAACKE E M, BERNITSAS E, SUBRAMANIAN K, et al. A comparison of magnetic resonance imaging methods to assess multiple sclerosis lesions: implications for patient characterization and clinical trial design[J/OL]. Diagnostics, 2021, 12(1): 77 [2024-03-24]. https://pubmed.ncbi.nlm.nih.gov/35054244/. DOI: 10.3390/diagnostics12010077.
[52]
ZHANG S, ZHONG J L, HUANG X, et al. The application value of MTP synthetic sequence in the diagnosis of acute ischemic stroke[J]. Chin J Magn Reson Imag, 2022, 13(7): 107-111. DOI: 10.12015/issn.1674-8034.2022.07.019.
[53]
SHEN L F, LU X D, WANG H Y, et al. Impaired T1 mapping and Tmax during the first 7 days after ischemic stroke. A retrospective observational study[J/OL]. J Stroke Cerebrovasc Dis, 2023, 32(12): 107383 [2024-03-24]. https://pubmed.ncbi.nlm.nih.gov/37844455/. DOI: 10.1016/j.jstrokecerebrovasdis.2023.107383.
[54]
ZHANG T, TANG R W, LIU S, et al. Plaque characteristics of middle cerebral artery assessed using strategically acquired gradient echo (STAGE) and vessel wall MR contribute to misery downstream perfusion in patients with intracranial atherosclerosis[J]. Eur Radiol, 2021, 31(1): 65-75. DOI: 10.1007/s00330-020-07055-6.
[55]
TANG R W, ZHANG Q Q, CHEN Y S, et al. Strategically acquired gradient echo (STAGE)-derived MR angiography might be a superior alternative method to time-of-flight MR angiography in visualization of leptomeningeal collaterals[J]. Eur Radiol, 2020, 30(9): 5110-5119. DOI: 10.1007/s00330-020-06840-7.
[56]
QIN Z J, WU W J, LIU D X, et al. Quantitative susceptibility mapping of brain iron relating to cognitive impairment in hypertension[J]. J Magn Reson Imaging, 2022, 56(2): 508-515. DOI: 10.1002/jmri.28043.
[57]
LIU S F, MOK K, NEELAVALLI J, et al. Improved MR venography using quantitative susceptibility-weighted imaging[J]. J Magn Reson Imaging, 2014, 40(3): 698-708. DOI: 10.1002/jmri.24413.
[58]
SU Y, WU W J, QIN Z J, et al. Deep gray matters iron deposition is positively associated with white matter hyperintensity in hypertension[J]. J Clin Hypertens, 2023, 25(8): 768-777. DOI: 10.1111/jch.14694.
[59]
SUN C, GHASSABAN K, SONG J G, et al. Quantifying calcium changes in the fetal spine using quantitative susceptibility mapping as extracted from STAGE imaging[J]. Eur Radiol, 2023, 33(1): 606-614. DOI: 10.1007/s00330-022-09042-5.
[60]
RYU K, NAM Y, GHO S M, et al. Data-driven synthetic MRI FLAIR artifact correction via deep neural network[J]. J Magn Reson Imaging, 2019, 50(5): 1413-1423. DOI: 10.1002/jmri.26712.
[61]
HAGIWARA A, OTSUKA Y, HORI M, et al. Improving the quality of synthetic FLAIR images with deep learning using a conditional generative adversarial network for pixel-by-pixel image translation[J]. AJNR Am J Neuroradiol, 2019, 40(2): 224-230. DOI: 10.3174/ajnr.A5927.
[62]
LIU Y W, NIU H J, REN P L, et al. Generation of quantification maps and weighted images from synthetic magnetic resonance imaging using deep learning network[J]. Phys Med Biol, 2022, 67(2). DOI: 10.1088/1361-6560/ac46dd.
[63]
DRAKE-PÉREZ M, BOTO J, FITSIORI A, et al. Clinical applications of diffusion weighted imaging in neuroradiology[J]. Insights Imaging, 2018, 9(4): 535-547. DOI: 10.1007/s13244-018-0624-3.

PREV One case of epidural lymphoplasmacyte-rich meningioma in the cervical thoracic vertebral canal
NEXT Research progress of multimodal magnetic resonance imaging in children with symptomatic epilepsy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn