Share:
Share this content in WeChat
X
Review
Research progress of multimodal magnetic resonance imaging in children with symptomatic epilepsy
FANG Junfang  DI Ningning  DONG Jingmin  LI Xiaoxiao  MU Xinnuan  JIANG Xingyue 

Cite this article as: FANG J F, DI N N, DONG J M, et al. Research progress of multimodal magnetic resonance imaging in children with symptomatic epilepsy[J]. Chin J Magn Reson Imaging, 2024, 15(4): 171-176. DOI:10.12015/issn.1674-8034.2024.04.028.


[Abstract] Children with epilepsy are a group that is particularly vulnerable to developing brain damage due to the developmental stage of the central nervous system. The causes of epilepsy in children are more complex and diverse, and the symptoms can take various forms. Early diagnosis and effective treatment can reduce the damage to the child's cerebral cortex, and maximize the brain function. According to whether there is obvious convulsions, epilepsy can be divided into convulsions and non-convulsions. Convulsions are easier to diagnose than non-convulsions, which can lead to misdiagnosis and delay in treatment. To confirm a diagnosis, it is necessary to use electroencephalography, which generates or exhibits rhythmic electrical discharges. With the continuous development of imaging techniques, it has become possible to identify the causes of epilepsy and locate the seizure foci more accurately and precisely. Additionally, functional imaging techniques have made it possible to early assess the changes in brain function during the early stage of epilepsy. In this article, we reviewed the research progress and clinical application of MRI and its fusion with positron emission tomography (PET) in children with symptomatic epilepsy in recent, the aim is to provide reference and reference for the related research in the future.
[Keywords] pediatric;epilepsy;magnetic resonance imaging;structural magnetic resonance imaging;functional magnetic resonance imaging;multimodal imaging

FANG Junfang   DI Ningning   DONG Jingmin   LI Xiaoxiao   MU Xinnuan   JIANG Xingyue*  

Department of Radiology, Binzhou Medical University Hospital, Binzhou 256600, China

Corresponding author: JIANG X Y, E-mail: xyjiang188@sina.com

Conflicts of interest   None.

Received  2023-09-27
Accepted  2024-03-26
DOI: 10.12015/issn.1674-8034.2024.04.028
Cite this article as: FANG J F, DI N N, DONG J M, et al. Research progress of multimodal magnetic resonance imaging in children with symptomatic epilepsy[J]. Chin J Magn Reson Imaging, 2024, 15(4): 171-176. DOI:10.12015/issn.1674-8034.2024.04.028.

[1]
TENNEY J R. Epilepsy-work-up and management in children[J]. Semin Neurol, 2020, 40(6): 638-646. DOI: 10.1055/s-0040-1718720.
[2]
SCHEFFER I E, BERKOVIC S, CAPOVILLA G, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology[J]. Epilepsia, 2017, 58(4): 512-521. DOI: 10.1111/epi.13709.
[3]
HU Z Q, ZENG H W, LIAO J X, et al. A resting-state functional magnetic resonance imaging study of altered brain function of benign epilepsy in children with central-temporal spikes[J]. Chin J Appl Clin Pediatr, 2020, 35(4): 285-288. DOI: 10.3760/cma.j.cn101070-20190731-0069.
[4]
XIAO B T, GAO B, CAO J H, et al. MRI features of symptomatic epilepsy in children[J]. Chinese Journal of Laboratory Diagnosis, 2022, 26(6): 877-880. DOI: 10.3969/j.issn.1007-4287.2022.06.022.
[5]
ÜNVER O, KESKIN S P, UYSAL S, et al. The epidemiology of epilepsy in children: a report from a Turkish pediatric neurology clinic[J]. J Child Neurol, 2015, 6: 698-702. DOI: 10.1177/0883073814539559.
[6]
MEDINA M T, DURON R M, MARTINEZ L, et al. Prevalence, incidence, and etiology of epilepsies in rural Honduras: the Salamá Study[J]. Epilepsia, 2005, 1: 124-131. DOI: 10.1111/j.0013-9580.2005.11704.
[7]
SCHMIDT D, SCHACHTER S C. Drug treatment of epilepsy in adults[J/OL]. BMJ, 2014, 348: g254 [2023-09-27]. https://pubmed.ncbi.nlm.nih.gov/24583319/. DOI: 10.1136/bmj.g254.
[8]
ZHANG Q Q, LIU L Z, JIN Z P, et al. Clinical features and prognosis factors of children with status epilepticus[J]. Chongqing Medicine, 2020, 49(23): 3931-3935. DOI: 10.3969/j.issn.1671-8348.2020.23.016.
[9]
CANPOLAT M, PER H, GUMUS H, et al. Investigating the prevalence of febrile convulsion in Kayseri, Turkey: An assessment of the risk factors for recurrence of febrile convulsion and for development of epilepsy[J]. Seizur, 2018, 55: 36-47. DOI: 10.1016/j.seizure.2018.01.007.
[10]
WANG X Y, NING S X, YANG S D. Electroencephalogram of status epilepticus in children[J]. Chin J Appl Clin Pediatr, 2017, 32(12): 888-892. DOI: 10.3760/cma.j.issn.2095-428X.2017.12.003.
[11]
COHEN E J, QUARTA E, BRAVI R, et al. Neural plasticity and network remodeling: From concepts to pathology[J]. Neuroscience, 2017, 344: 326-345. DOI: 10.1016/j.neuroscience.2016.12.048.
[12]
DAVAGNANAM I, CHEN Z B, HOSKOTE C, et al. Prevalence of MRI abnormalities in people with epilepsy in rural China[J/OL]. Neurology, 2020, 95(9): e1236-e1243 [2023-09-27]. https://n.neurology.org/content/95/9/e1236.long. DOI: 10.1212/WNL.0000000000010171.
[13]
KULASEHARAN S, AMINPOUR A, EBRAHIMI M, et al. Identifying lesions in paediatric epilepsy using morphometric and textural analysis of magnetic resonance images[J/OL]. Neuroimage Clin, 2019, 21: 101663 [2023-09-27]. https://doi.org/10.1016/j.nicl.2019.101663. DOI: 10.1016/j.nicl.2019.101663.
[14]
LUO C, LI Q, LAI Y, et al. Altered functional connectivity in default mode network in absence epilepsy: a resting-state fMRI study[J]. Hum Brain Mapp, 2011, 32(3): 438-449. DOI: 10.1002/hbm.21034.
[15]
LUO C, QIU C, GUO Z, et al. Disrupted functional brain connectivity in partial epilepsy: a resting-state fMRI study[J/OL]. PLoS One, 2011, 7(1): e28196 [2023-09-27]. https://doi.org/10.1371/journal.pone.0028196. DOI: 10.1371/journal.pone.0028196.
[16]
DRENTHEN G S, FASEN F, FONSECA W E, et al. Functional brain network characteristics are associated with epilepsy severity in childhood absence epilepsy[J/OL]. Neuroimage Clin, 2020, 27: 102264 [2023-09-27]. https://doi.org/10.1016/j.nicl.2020.102264. DOI: 10.1016/j.nicl.2020.102264.
[17]
BARRON D S, FOX P T, PARDOE H, et al. Thalamic functional connectivity predicts seizure laterality in individual TLE patients: application of a biomarker development strategy[J]. Neuroimage Clin, 2014, 7: 273-280. DOI: 10.1016/j.nicl.2014.08.002.
[18]
HASSANZADEH E, HORMAK A, HASSANZADEH M, et al. Comparison of fMRI language laterality with and without sedation in pediatric epilepsy[J/OL]. Neuroimage Clin, 2023, 38: 103448 [2023-09-27]. https://doi.org/10.1016/j.nicl.2023.103448. DOI: 10.1016/j.nicl.2023.103448.
[19]
YOO R E, YUN T J, YOON B W, et al. Identification of cerebral perfusion using arterial spin labeling in patients with seizures in acute settings[J/OL]. PLoS One, 2017, 12(3): e0173538 [2023-09-27]. https://doi.org/10.1371/journal.pone.0173538. DOI: 10.1371/journal.pone.0173538.
[20]
GAXIOLA-VALDEZ I, SINGH S, PERERA T, et al. Seizure onset zone localization using postictal hypoperfusion detected by arterial spin labelling MRI[J]. Brain, 2017, 140(11): 2895-2911. DOI: 10.1093/brain/awx241.
[21]
WANG Y R, LI X Y, LI R S, et al. 18F-FDG PET/MR combined with arterial spin labeling in locating epileptogenic zone in pediatric epilepsy[J]. Chin J Med Imaging, 2023, 31(1): 12-17. DOI: 10.3969/j.issn.1005-5185.2023.01.003.
[22]
KHALAF A M, NADEL H R, DAHMOUSH H M. Simultaneously acquired MRI arterial spin-labeling and interictal FDG-PET improves diagnosis of pediatric temporal lobe epilepsy[J]. AJNR Am J Neuroradiol, 2022, 43(3): 468-473. DOI: 10.3174/ajnr.A7421.
[23]
LEE S M, KWON S, LEE Y J. Diagnostic usefulness of arterial spin labeling in MR negative children with new onset seizures[J]. Seizure, 2019, 65: 151-158. DOI: 10.1016/j.seizure.2019.01.024.
[24]
CHEN S Q, XIAO Y W, ZHANG Z T, et al. Epileptogenic foci present as hyperperfusion on 3D pseudo-continuous arterial spin labeling in epileptic interval: Report of 140 cases[J]. Chin J Med Imaging Technol, 2023, 39(6): 940-942. DOI: 10.13929/j.issn.1003-3289.2023.06.033.
[25]
GUAN C X, XIAO J X, ZHU Y, et al. Value of MRI arterial spin labeling technique on the detection of epileptogenic zone in children with drug resistant epilepsy[J]. Chin J Radiol, 2023, 57(2): 187-193. DOI: 10.3760/cma.j.cn112149-20221127-00948.
[26]
LI Z H, LI F. Cognitive assessment of late-onset occipital lobe epilepsy in children by magnetic resonance spectroscopy and Wechsler intelligence scale[J]. Modern Medical Imagelogy, 2022, 31(5): 851-854. DOI: 10.3969/j.issn.1006-7035.2022.05.014.
[27]
ZHU K, ZENG L H, ZHAO X L, et al. Application of 3.0 T MRI 2D-CSI 1H-MRS in children with temporal lobe epilepsy without morphological changes[J]. Chin J Magn Reson Imaging, 2020, 11(12): 1097-1103. DOI: 10.12015/issn.1674-8034.2020.12.004.
[28]
LIU Q, DONG Y, HAN Y M. Clinical value of video electroencephalogram combined with MRI in diagnosis of symptomatic epilepsy in children[J]. Journal of Clinical and Experimental Medicine, 2023, 22(11): 1204-1207. DOI: 10.3969/j.issn.1671-4695.2023.11.023.
[29]
AZAB S F, SHERIEF L M, SALEH S H, et al. Childhood temporal lobe epilepsy: correlation between electroencephalography and magnetic resonance spectroscopy: a case-control study[J/OL]. Ital J Pediatr, 2015, 41: 32 [2023-09-27]. https://doi.org/10.1186/s13052-015-0138-2. DOI: 10.1186/s13052-015-0138-2.
[30]
KILIC H, YILMAZ K, ASGAROVA P, et al. Electrical status epilepticus in sleep: The role of thalamus in etiopathogenesis[J]. Seizure, 2021, 93: 44-50. DOI: 10.1016/j.seizure.2021.10.010.
[31]
JIANG L, ZHANG T J, LV F J, et al. Structural covariance network of cortical gyrification in benign childhood epilepsy with centrotemporal spikes[J/OL]. Front Neurol, 2018, 9:10 [2023-09-27]. https://doi.org/10.3389/fneur.2018.00010. DOI: 10.3389/fneur.2018.00010.
[32]
GARCIA-RAMOS C, DABBS K, LIN J J, et al. Network analysis of prospective brain development in youth with benign epilepsy with centrotemporal spikes and its relationship to cognition[J]. Epilepsia, 2019, 60(9): 1838-1848. DOI: 10.1111/epi.16290.
[33]
SPITZER H, RIPART M, WHITAKER K, et al. Interpretable surface-based detection of focal cortical dysplasias: a multi-centre epilepsy lesion detection study[J]. Brain, 2022, 145(11): 3859-3871. DOI: 10.1093/brain/awac224.
[34]
MEI L, LONG R, TANG G C, et al. The study of cerebral white matter change in children with new-onset, untreated idiopathic generalized epilepsy by using magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2018, 9(2): 87-91. DOI: 10.12015/issn.1674-8034.2018.02.002.
[35]
SHU M Z, YU C Y, SHI Q, et al. Alterations in white matter integrity and asymmetry in patients with benign childhood epilepsy with centrotemporal spikes and childhood absence epilepsy: An automated fiber quantification tractography study[J/OL]. Epilepsy Behav, 2021, 123: 108235 [2023-09-27]. https://doi.org/10.1016/j.yebeh.2021.108235. DOI: 10.1016/j.yebeh.2021.108235.
[36]
QIU W, YU C, GAO Y, et al. Disrupted topological organization of structural brain networks in childhood absence epilepsy[J/OL]. Sci Rep, 2017, 7(1): 11973 [2023-09-27]. https://pubmed.ncbi.nlm.nih.gov/28931825/. DOI: 10.1038/s41598-017-10778-0.
[37]
YU Y D, QIU M D, ZOU W W, et al. Impaired rich-club connectivity in childhood absence epilepsy[J/OL]. Front Neurol, 2023, 14: 1135305 [2023-09-27]. https://doi.org/10.3389/fneur.2023.1135305. DOI: 10.3389/fneur.2023.1135305.
[38]
LARIVIÈRE S, ROYER J, RODRÍGUEZ-CRUCES R, et al. Structural network alterations in focal and generalized epilepsy assessed in a worldwide ENIGMA study follow axes of epilepsy risk gene expression[J/OL]. Nat Commun, 2022, 13(1): 4320 [2023-09-27]. https://pubmed.ncbi.nlm.nih.gov/35896547/. DOI: 10.1038/s41467-022-31730-5.
[39]
GAO Y, ZHANG Y, WONG C S, et al. Diffusion abnormalities in temporal lobes of children with temporal lobe epilepsy: a preliminary diffusional kurtosis imaging study and comparison with diffusion tensor imaging[J]. NMR Biomed, 2012, 25(12): 1369-1377. DOI: 10.1002/nbm.2809.
[40]
DEL GAIZO J, MOFRAD N, JENSEN J H, et al. Using machine learning to classify temporal lobe epilepsy based on diffusion MRI[J/OL]. Brain Behav, 2017, 7(10): e00801 [2023-09-27]. https://pubmed.ncbi.nlm.nih.gov/29075561/. DOI: 10.1002/brb3.801.
[41]
LI W, WANG X, WEI X, et al. Susceptibility-weighted and diffusion kurtosis imaging to evaluate encephalomalacia with epilepsy after traumatic brain injury[J]. Ann Clin Transl Neurol, 2018, 5(5): 552-558. DOI: 10.1002/acn3.552.
[42]
KAZEMI H, HASHEMI-FESHARAKI S, RAZAGHI S, et al. Intractable epilepsy and craniocerebral trauma: analysis of 163 patients with blunt and penetrating head injuries sustained in war[J]. Injury, 2012, 43(12): 2132-2135. DOI: 10.1016/j.injury.2012.06.007.
[43]
KUMAR A, CHUGANI H T. The role of radionuclide imaging in epilepsy, Part 1: Sporadic temporal and extratemporal lobe epilepsy[J]. J Nucl Med Technol, 2017, 45(1): 14-21. DOI: 10.2967/jnumed.112.114397.
[44]
JAYALAKSHMI S, NANDA S K, VOOTURI S, et al. Focal cortical dysplasia and refractory epilepsy: Role of multimodality imaging and outcome of surgery[J]. AJNR Am J Neuroradiol, 2019, 40(5): 892-898. DOI: 10.3174/ajnr.A6041.
[45]
QIAN J, HE J P, ZHU Y J, et al. Preliminary application of three-dimensional PET-MRI co-registration and fusion technology in the presurgical evaluation of refractory epilepsy in children[J]. Chin J Neurosurg, 2022, 38(3): 280-284. DOI: 10.3760/cma.j.cn112050-20210630-00314.
[46]
LIU M, JI T Y , YE J T, et al. Application of positron emission computed tomography /magnetic resonance imaging coregistration in improving epileptic foci detection rate of structural intractable epilepsy in children[J]. Chin J Appl Clin Pediatr, 2018, 33(23): 1815-1819. DOI: 10.3760/cma.j.issn.2095-428X.2018.23.015.
[47]
MINOTTI L, MONTAVONT A, SCHOLLY J, et al. Indications and limits of stereoelectroencephalography(SEEG)[J]. Neurophysiol Clin, 2018, 48(1): 15-24. DOI: 10.1016/j.neucli.2017.11.006.
[48]
ZHAO R, ZHOU Y F, YANG H W, et al. Application of stereotactic electroencephalogram based on multimodal images in the treatment of pediatric refractory epilepsy[J]. Chin J Neurosurg, 2018, 34(9): 878-882. DOI: 10.3760/cma.j.issn.1001-2346.2018.09.004.
[49]
JUHÁSZ C, JOHN F. Utility of MRI, PET, and ictal SPECT in presurgical evaluation of non-lesional pediatric epilepsy[J]. Seizure, 2020, 77: 15-28. DOI: 10.1016/j.seizure.2019.05.008.

PREV Application of multi-contrast quantitative MR imaging in central nervous system
NEXT Research progress of magnetic resonance imaging in amygdala of major depressive disorder
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn