Share:
Share this content in WeChat
X
Review
Research progress of magnetic resonance imaging in amygdala of major depressive disorder
LIU Yuwei  XIA Shuyuan  REN Qingfa  XU Donghao  NING Hongyu  LI Xianglin 

Cite this article as: LIU Y W, XIA S Y, REN Q F, et al. Research progress of magnetic resonance imaging in amygdala of major depressive disorder[J]. Chin J Magn Reson Imaging, 2024, 15(4): 177-181, 213. DOI:10.12015/issn.1674-8034.2024.04.029.


[Abstract] Major depressive disorder (MDD) is a serious mental disorder, mainly characterized by depression, loss of interest and pleasure, and suicidal tendencies. The amygdala is one of the key regions for emotional processing and regulation and plays an important role in the pathogenesis of MDD. The application of magnetic resonance imaging technology has revealed changes in the structure, function and metabolism of the amygdala in patients with MDD, which has important clinical significance for the early diagnosis, disease monitoring and efficacy evaluation of MDD. Therefore, this article will review relevant research on different magnetic resonance imaging techniques in the amygdala in MDD, aiming to contribute to the thorough understanding of MDD's pathological mechanisms and the advancement of diagnostic and therapeutic approaches.
[Keywords] major depressive disorder;amygdala;magnetic resonance imaging;structural magnetic resonance imaging;blood oxygenation level dependent;arterial spin labeling;magnetic resonance spectroscopy

LIU Yuwei1   XIA Shuyuan2   REN Qingfa2   XU Donghao1   NING Hongyu1   LI Xianglin1*  

1 School of Medical Imaging, Binzhou Medical University, Yantai 264003, China

2 Department of Radiology, Binzhou Medical University Hospital, Binzhou 256603, China

Corresponding author: LI X L, E-mail: xlli@bzmc.edu.cn

Conflicts of interest   None.

Received  2024-01-08
Accepted  2024-04-08
DOI: 10.12015/issn.1674-8034.2024.04.029
Cite this article as: LIU Y W, XIA S Y, REN Q F, et al. Research progress of magnetic resonance imaging in amygdala of major depressive disorder[J]. Chin J Magn Reson Imaging, 2024, 15(4): 177-181, 213. DOI:10.12015/issn.1674-8034.2024.04.029.

[1]
MARX W, PENNINX B, SOLMI M, et al. Major depressive disorder[J/OL]. Nat Rev Dis Primers, 2023, 9(1): 44 [2024-01-08]. https://doi.org/10.1038/s41572-023-00454-1. DOI: 10.1038/s41572-023-00454-1.
[2]
SU Y, YE C, XIN Q, et al. Major depressive disorder with suicidal ideation or behavior in Chinese population: A scoping review of current evidence on disease assessment, burden, treatment and risk factors[J]. J Affect Disord, 2023, 340: 732-742. DOI: 10.1016/j.jad.2023.08.106.
[3]
FILATOVA E V, SHADRINA M I, SLOMINSKY P A. Major depression: One brain, one disease, one set of intertwined processes[J/OL]. Cells, 2021, 10(6) [2024-01-08]. https://doi.org/10.3390/cells10061283. DOI: 10.3390/cells10061283.
[4]
LI X, WANG J. Abnormal neural activities in adults and youths with major depressive disorder during emotional processing: a meta-analysis[J]. Brain Imaging Behav, 2021, 15(2): 1134-1154. DOI: 10.1007/s11682-020-00299-2.
[5]
ŠIMIĆ G, TKALČIĆ M, VUKIĆ V, et al. Understanding emotions: Origins and roles of the amygdala[J/OL]. Biomolecules, 2021, 11(6) [2024-01-08]. https://doi.org/10.3390/biom11060823. DOI: 10.3390/biom11060823.
[6]
GRAY J P, MüLLER V I, EICKHOFF S B, et al. Multimodal abnormalities of brain structure and function in major depressive disorder: A meta-analysis of neuroimaging studies[J]. Am J Psychiatry, 2020, 177(5): 422-434. DOI: 10.1176/appi.ajp.2019.19050560.
[7]
INMAN C S, HOLLEARN M K, AUGUSTIN L, et al. Discovering how the amygdala shapes human behavior: From lesion studies to neuromodulation[J]. Neuron, 2023, 111(24): 3906-3910. DOI: 10.1016/j.neuron.2023.09.040.
[8]
NAWAZ H, SHAH I, ALI S. The amygdala connectivity with depression and suicide ideation with suicide behavior: A meta-analysis of structural MRI, resting-state fMRI and task fMRI[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2023, 124: 110736 [2024-01-08]. https://doi.org/10.1016/j.pnpbp.2023.110736. DOI: 10.1016/j.pnpbp.2023.110736.
[9]
FENG R H, ZHUO L H, LI H W, et al. MRI advances of hippocampus in adolescents with depression[J]. Chin J Magn Reson Imaging, 2023, 14(4): 120-125. DOI: 10.12015/issn.1674-8034.2023.04.021.
[10]
LEMKE H, ROMANKIEWICZ L, FÖRSTER K, et al. Association of disease course and brain structural alterations in major depressive disorder[J]. Depress Anxiety, 2022, 39(5): 441-451. DOI: 10.1002/da.23260.
[11]
AGHAMOHAMMADI-SERESHKI A, COUPLAND N J, SILVERSTONE P H, et al. Effects of childhood adversity on the volumes of the amygdala subnuclei and hippocampal subfields in individuals with major depressive disorder[J/OL]. J Psychiatry Neurosci, 2021, 46(1): E186-E195 [2024-01-08]. https://doi.org/10.1503/jpn.200034. DOI: 10.1503/jpn.200034.
[12]
NOLAN M, ROMAN E, NASA A, et al. Hippocampal and amygdalar volume changes in major depressive disorder: A targeted review and focus on stress[J/OL]. Chronic Stress (Thousand Oaks), 2020, 4: 2470547020944553 [2024-01-08]. https://doi.org/10.1177/2470547020944553. DOI: 10.1177/2470547020944553.
[13]
YAO Z, FU Y, WU J, et al. Morphological changes in subregions of hippocampus and amygdala in major depressive disorder patients[J]. Brain Imaging Behav, 2020, 14(3): 653-667. DOI: 10.1007/s11682-018-0003-1.
[14]
KIRSTEIN C F, GÜNTÜRKÜN O, OCKLENBURG S. Ultra-high field imaging of the amygdala - A narrative review[J/OL]. Neurosci Biobehav Rev, 2023, 152: 105245 [2024-01-08]. https://doi.org/10.1016/j.neubiorev.2023.105245. DOI: 10.1016/j.neubiorev.2023.105245.
[15]
KIM H, HAN K M, CHOI K W, et al. Volumetric alterations in subregions of the amygdala in adults with major depressive disorder[J]. J Affect Disord, 2021, 295: 108-115. DOI: 10.1016/j.jad.2021.08.012.
[16]
TESEN H, WATANABE K, OKAMOTO N, et al. Volume of amygdala subregions and clinical manifestations in patients with first-episode, drug-naïve major depression[J/OL]. Front Hum Neurosci, 2021, 15: 780884 [2024-01-08]. https://doi.org/10.3389/fnhum.2021.780884. DOI: 10.3389/fnhum.2021.780884.
[17]
BROWN S S G, RUTLAND J W, VERMA G, et al. Structural MRI at 7T reveals amygdala nuclei and hippocampal subfield volumetric association with major depressive disorder symptom severity[J/OL]. Sci Rep, 2019, 9(1): 10166 [2024-01-08]. https://doi.org/10.1038/s41598-019-46687-7. DOI: 10.1038/s41598-019-46687-7.
[18]
SEEWOO B J, RODGER J, DEMITRACK M A, et al. Neurostructural differences in adolescents with treatment-resistant depression and treatment effects of transcranial magnetic stimulation[J]. Int J Neuropsychopharmacol, 2022, 25(8): 619-630. DOI: 10.1093/ijnp/pyac007.
[19]
BRACHT T, WALTHER S, BREIT S, et al. Distinct and shared patterns of brain plasticity during electroconvulsive therapy and treatment as usual in depression: an observational multimodal MRI-study[J/OL]. Transl Psychiatry, 2023, 13(1): 6 [2024-01-08]. https://doi.org/10.1038/s41398-022-02304-2. DOI: 10.1038/s41398-022-02304-2.
[20]
HO T C, GUTMAN B, POZZI E, et al. Subcortical shape alterations in major depressive disorder: Findings from the ENIGMA major depressive disorder working group[J]. Hum Brain Mapp, 2022, 43(1): 341-351. DOI: 10.1002/hbm.24988.
[21]
PENG J, SHAN Y, LI Y, et al. Whole-brain white matter abnormalities in first-episode patients with major depressive disorder: A diffusion tensor imaging study[J]. Chin J Med Imaging, 2021, 29(5): 420-424. DOI: 10.3969/j.issn.1005-5185.2021.05.002.
[22]
BHATIA K D, HENDERSON L A, HSU E, et al. Reduced integrity of the uncinate fasciculus and cingulum in depression: A stem-by-stem analysis[J]. J Affect Disord, 2018, 235: 220-228. DOI: 10.1016/j.jad.2018.04.055.
[23]
WU F, TU Z, SUN J, et al. Abnormal functional and structural connectivity of amygdala-prefrontal circuit in first-episode adolescent depression: A combined fMRI and DTI study[J/OL]. Front Psychiatry, 2019, 10: 983 [2024-01-08]. https://doi.org/10.3389/fpsyt.2019.00983. DOI: 10.3389/fpsyt.2019.00983.
[24]
PILLAI R L I, HUANG C, LABELLA A, et al. Examining raphe-amygdala structural connectivity as a biological predictor of SSRI response[J]. J Affect Disord, 2019, 256: 8-16. DOI: 10.1016/j.jad.2019.05.055.
[25]
DENG J, HE J B, QIU L H. Research progress of magnetic resonance functional brain imaging in adolescent depression[J]. Chin J Magn Reson Imaging, 2022, 13(8): 101-103, 108. DOI: 10.12015/issn.1674-8034.2022.08.022.
[26]
LEMKE H, PROBST S, WARNEKE A, et al. The course of disease in major depressive disorder is associated with altered activity of the limbic system during negative emotion processing[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2022, 7(3): 323-332. DOI: 10.1016/j.bpsc.2021.05.008.
[27]
GROGANS S E, FOX A S, SHACKMAN A J. The amygdala and depression: A sober reconsideration[J]. Am J Psychiatry, 2022, 179(7): 454-457. DOI: 10.1176/appi.ajp.20220412.
[28]
YOUNG K D, ZOTEV V, PHILLIPS R, et al. Amygdala real-time functional magnetic resonance imaging neurofeedback for major depressive disorder: A review[J]. Psychiatry Clin Neurosci, 2018, 72(7): 466-481. DOI: 10.1111/pcn.12665.
[29]
REDLICH R, OPEL N, BÜRGER C, et al. The limbic system in youth depression: Brain structural and functional alterations in adolescent in-patients with severe depression[J]. Neuropsychopharmacology, 2018, 43(3): 546-554. DOI: 10.1038/npp.2017.246.
[30]
YOUNG K D, SIEGLE G J, BODURKA J, et al. Amygdala activity during autobiographical memory recall in depressed and vulnerable individuals: Association with symptom severity and autobiographical overgenerality[J]. Am J Psychiatry, 2016, 173(1): 78-89. DOI: 10.1176/appi.ajp.2015.15010119.
[31]
TAMM S, HARMER C J, SCHIEL J, et al. No association between amygdala responses to negative faces and depressive symptoms: Cross-sectional data from 28,638 individuals in the UK biobank cohort[J]. Am J Psychiatry, 2022, 179(7): 509-513. DOI: 10.1176/appi.ajp.21050466.
[32]
PARK J H, LEE S B, LEE J J, et al. Epidemiology of MRI-defined vascular depression: A longitudinal, community-based study in Korean elders[J]. J Affect Disord, 2015, 180: 200-206. DOI: 10.1016/j.jad.2015.04.008.
[33]
YOUNG K D, FRIEDMAN E S, COLLIER A, et al. Response to SSRI intervention and amygdala activity during self-referential processing in major depressive disorder[J/OL]. Neuroimage Clin, 2020, 28: 102388 [2024-01-08]. https://doi.org/10.1016/j.nicl.2020.102388. DOI: 10.1016/j.nicl.2020.102388.
[34]
LOUREIRO J R A, LEAVER A, VASAVADA M, et al. Modulation of amygdala reactivity following rapidly acting interventions for major depression[J]. Hum Brain Mapp, 2020, 41(7): 1699-1710. DOI: 10.1002/hbm.24895.
[35]
MA X, LIU J, LIU T, et al. Altered resting-state functional activity in medication-naive patients with first-episode major depression disorder vs. healthy control: A quantitative meta-analysis[J/OL]. Front Behav Neurosci, 2019, 13: 89 [2024-01-08]. https://doi.org/10.3389/fnbeh.2019.00089. DOI: 10.3389/fnbeh.2019.00089.
[36]
DU L, WANG J, MENG B, et al. Early life stress affects limited regional brain activity in depression[J/OL]. Sci Rep, 2016, 6: 25338 [2024-01-08]. https://doi.org/10.1038/srep25338. DOI: 10.1038/srep25338.
[37]
EBNEABBASI A, MAHDIPOUR M, NEJATI V, et al. Emotion processing and regulation in major depressive disorder: A 7T resting-state fMRI study[J]. Hum Brain Mapp, 2021, 42(3): 797-810. DOI: 10.1002/hbm.25263.
[38]
XIE S H, NIU G M, GAO Y, et al. Comparative study of local consistency with the resting state magnetic resonance imaging under first-episode depression[J]. Chin J Magn Reson Imaging, 2015, 6(1): 10-14. DOI: 10.3969/j.issn.1674-8034.
[39]
WEN X, HAN B, LI H, et al. Unbalanced amygdala communication in major depressive disorder[J]. J Affect Disord, 2023, 329: 192-206. DOI: 10.1016/j.jad.2023.02.091.
[40]
ZHANG A, YANG C, LI G, et al. Functional connectivity of the prefrontal cortex and amygdala is related to depression status in major depressive disorder[J]. J Affect Disord, 2020, 274: 897-902. DOI: 10.1016/j.jad.2020.05.053.
[41]
YANG H, CHEN X, CHEN Z B, et al. Disrupted intrinsic functional brain topology in patients with major depressive disorder[J]. Mol Psychiatry, 2021, 26(12): 7363-7371. DOI: 10.1038/s41380-021-01247-2.
[42]
YUAN M, PANTAZATOS S P, ZHU H, et al. Altered amygdala subregion-related circuits in treatment-naïve post-traumatic stress disorder comorbid with major depressive disorder[J]. Eur Neuropsychopharmacol, 2019, 29(10): 1092-1101. DOI: 10.1016/j.euroneuro.2019.07.238.
[43]
LI W, WANG C, LAN X, et al. Resting-state functional connectivity of the amygdala in major depressive disorder with suicidal ideation[J]. J Psychiatr Res, 2022, 153: 189-196. DOI: 10.1016/j.jpsychires.2022.07.001.
[44]
LIU H, WANG C, LAN X, et al. Functional connectivity of the amygdala and the antidepressant and antisuicidal effects of repeated ketamine infusions in major depressive disorder[J/OL]. Front Neurosci, 2023, 17: 1123797 [2024-01-08]. https://doi.org/10.3389/fnins.2023.1123797. DOI: 10.3389/fnins.2023.1123797.
[45]
TANG S, LI H, LU L, et al. Anomalous functional connectivity of amygdala subregional networks in major depressive disorder[J]. Depress Anxiety, 2019, 36(8): 712-722. DOI: 10.1002/da.22901.
[46]
WANG Y M, YANG Z Y. Aberrant pattern of cerebral blood flow in patients with major depressive disorder: A meta-analysis of arterial spin labelling studies[J/OL]. Psychiatry Res Neuroimaging, 2022, 321: 111458 [2024-01-08]. https://doi.org/10.1016/j.pscychresns.2022.111458. DOI: 10.1016/j.pscychresns.2022.111458.
[47]
LEAVER A M, YANG H, SIDDARTH P, et al. Resilience and amygdala function in older healthy and depressed adults[J]. J Affect Disord, 2018, 237: 27-34. DOI: 10.1016/j.jad.2018.04.109.
[48]
ZHANG N, QIN J, YAN J, et al. Increased ASL-CBF in the right amygdala predicts the first onset of depression in healthy young first-degree relatives of patients with major depression[J]. J Cereb Blood Flow Metab, 2020, 40(1): 54-66. DOI: 10.1177/0271678x19861909.
[49]
SHI Y, LI J, TONG P, et al. Regional cerebral blood flow in major depression treated with electroconvulsive therapy: an arterial spin labeling magnetic resonance study[J]. Neurocase, 2022, 28(2): 246-250. DOI: 10.1080/13554794.2022.2044861.
[50]
FAN D, HE C, LIU X, et al. Altered resting-state cerebral blood flow and functional connectivity mediate suicidal ideation in major depressive disorder[J]. J Cereb Blood Flow Metab, 2022, 42(9): 1603-1615. DOI: 10.1177/0271678x221090998.
[51]
SARAWAGI A, SONI N D, PATEL A B. Glutamate and GABA homeostasis and neurometabolism in major depressive disorder[J/OL]. Front Psychiatry, 2021, 12: 637863 [2024-01-08]. https://doi.org/10.3389/fpsyt.2021.637863. DOI: 10.3389/fpsyt.2021.637863.
[52]
LEE M T, PENG W H, KAN H W, et al. Neurobiology of depression: chronic stress alters the glutamatergic system in the brain-focusing on AMPA receptor[J/OL]. Biomedicines, 2022, 10(5) [2024-01-08]. https://doi.org/10.3390/biomedicines10051005. DOI: 10.3390/biomedicines10051005.
[53]
LUTTENBACHER I, PHILLIPS A, KAZEMI R, et al. Transdiagnostic role of glutamate and white matter damage in neuropsychiatric disorders: A Systematic Review[J]. J Psychiatr Res, 2022, 147: 324-348. DOI: 10.1016/j.jpsychires.2021.12.042.
[54]
SHIRAYAMA Y, TAKAHASHI M, OSONE F, et al. Myo-inositol, glutamate, and glutamine in the prefrontal cortex, hippocampus, and amygdala in major depression[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2017, 2(2): 196-204. DOI: 10.1016/j.bpsc.2016.11.006.
[55]
HENIGSBERG N, SAVIĆ A, RADOŠ M, et al. Choline elevation in amygdala region at recovery indicates longer survival without depressive episode: a magnetic resonance spectroscopy study[J]. Psychopharmacology (Berl), 2021, 238(5): 1303-1314. DOI: 10.1007/s00213-019-05303-2.
[56]
KAHL K G, ATALAY S, MAUDSLEY A A, et al. Altered neurometabolism in major depressive disorder: A whole brain (1)H-magnetic resonance spectroscopic imaging study at 3T[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 101: 109916 [2024-01-08]. https://doi.org/10.1016/j.pnpbp.2020.109916. DOI: 10.1016/j.pnpbp.2020.109916.
[57]
MAMOUNE K E, BARANTIN L, ADRIAENSEN H, et al. Application of Chemical Exchange Saturation Transfer (CEST) in neuroimaging[J/OL]. J Chem Neuroanat, 2021, 114: 101944 [2024-01-08]. https://doi.org/10.1016/j.jchemneu.2021.101944. DOI: 10.1016/j.jchemneu.2021.101944.

PREV Research progress of multimodal magnetic resonance imaging in children with symptomatic epilepsy
NEXT Research progress of magnetic resonance imaging in evaluating cerebellar development in preterm infants
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn