Share:
Share this content in WeChat
X
Review
Research progress of magnetic resonance imaging in evaluating cerebellar development in preterm infants
GONG He  REN Qingfa  XU Donghao  YIN Zhijie  WANG Jing  XU Lumeng  LI Xianglin 

Cite this article as: GONG H, REN Q F, XU D H, et al. Research progress of magnetic resonance imaging in evaluating cerebellar development in preterm infants[J]. Chin J Magn Reson Imaging, 2024, 15(4): 182-186. DOI:10.12015/issn.1674-8034.2024.04.030.


[Abstract] Preterm infants are defined as newborns born at a gestational age of less than 37 weeks. Although most preterm infants do not have obvious brain structural damage, there is still a higher risk of neurodevelopmental disorders in the later stage. The specific mechanism is not clear, which may be caused by premature birth disrupting the normal brain development process. In recent years, studies on the brain development of preterm infants mainly focus on the cerebrum, the cerebellum also plays an important role in coordinating motor, learning and cognitive functions, but there are relatively few studies on the cerebellar development of preterm infants. MRI is an imaging technique that can provide information about brain volume, function and metabolism in vivo, and it is of great significance for the study of cerebellar development in preterm infants. Therefore, this article reviews the research progress of magnetic resonance imaging in evaluating cerebellar development in preterm infants, with the aim of finding the biomarkers of cerebellar development in preterm infants and providing imaging evidence for the pathophysiological mechanism of cerebellar development in preterm infants.
[Keywords] preterm infants;magnetic resonance imaging;cerebellum;brain development;brain structure;brain function

GONG He1   REN Qingfa2   XU Donghao1   YIN Zhijie2   WANG Jing2   XU Lumeng1   LI Xianglin1*  

1 School of Medical Imaging, Binzhou Medical University, Yantai 264003, China

2 Department of Radiology, Binzhou Medical University Hospital, Binzhou 256600, China

Corresponding author: LI X L, E-mail: xlli@bzmc.edu.cn

Conflicts of interest   None.

Received  2023-12-25
Accepted  2024-04-08
DOI: 10.12015/issn.1674-8034.2024.04.030
Cite this article as: GONG H, REN Q F, XU D H, et al. Research progress of magnetic resonance imaging in evaluating cerebellar development in preterm infants[J]. Chin J Magn Reson Imaging, 2024, 15(4): 182-186. DOI:10.12015/issn.1674-8034.2024.04.030.

[1]
OHUMA E O, MOLLER A B, BRADLEY E, et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis[J]. Lancet, 2023, 402(10409): 1261-1271. DOI: 10.1016/S0140-6736(23)00878-4.
[2]
SONG Q, CHEN J, ZHOU Y, et al. Preterm delivery rate in China: a systematic review and meta-analysis[J/OL]. BMC Pregnancy Childbirth, 2022, 22(1): 383 [2023-12-25]. https://doi.org/10.1186/s12884-022-04713-z. DOI: 10.1186/s12884-022-04713-z.
[3]
SPRADLEY F T, DE COSTA A, A-B MOLLER, et al. Study protocol for WHO and UNICEF estimates of global, regional, and national preterm birth rates for 2010 to 2019[J/OL]. PloS One, 2021, 16(10): e0258751 [2023-12-25]. https://doi.org/10.1371/journal.pone.0258751. DOI: 10.1371/journal.pone.0258751.
[4]
OKADA N J, LIU J, TSANG T, et al. Atypical cerebellar functional connectivity at 9 months of age predicts delayed socio‐communicative profiles in infants at high and low risk for autism[J]. J Child Psychol Psychiatry, 2021, 63(9): 1002-1016. DOI: 10.1111/jcpp.13555.
[5]
WANG P, WANG J, JIANG Y, et al. Cerebro-cerebellar dysconnectivity in children and adolescents with attention-deficit/hyperactivity disorder[J]. J Am Acad Child Adolesc Psychiatry, 2022, 61(11): 1372-1384. DOI: 10.1016/j.jaac.2022.03.035.
[6]
TAVARES V, FERNANDES L A, ANTUNES M, et al. Sex differences in functional connectivity between resting state brain networks in autism spectrum disorder[J]. J Autism Dev Disord, 2021, 52(7): 3088-3101. DOI: 10.1007/s10803-021-05191-6.
[7]
HALDIPUR P, MILLEN K J, ALDINGER K A. Human cerebellar development and transcriptomics: Implications for neurodevelopmental disorders[J]. Annu Rev Neurosci, 2022, 45(1): 515-531. DOI: 10.1146/annurev-neuro-111020-091953.
[8]
ANTERAPER S A, GUELL X, COLLIN G, et al. Abnormal function in dentate nuclei precedes the onset of psychosis: A resting-state fMRI study in high-risk individuals[J]. Schizophr Bull, 2021, 47(5): 1421-1430. DOI: 10.1093/schbul/sbab038.
[9]
REVUELTA M, SCHEUER T, L-J CHEW, et al. Glial factors regulating white matter development and pathologies of the cerebellum[J]. Neurochem Res, 2020, 45(3): 643-655. DOI: 10.1007/s11064-020-02961-z.
[10]
ARAUJO A P B, CARPI-SANTOS R, GOMES F C A. The role of astrocytes in the development of the cerebellum[J]. Cerebellum, 2019, 18(6): 1017-1035. DOI: 10.1007/s12311-019-01046-0.
[11]
GRUOL D L. The neuroimmune system and the cerebellum[J/OL]. Cerebellum, 2023 [2023-12-25]. https://doi.org/10.1007/s12311-023-01624-3. DOI: 10.1007/s12311-023-01624-3.
[12]
ISKUSNYKH I Y, BUDDINGTON R K, CHIZHIKOV V V. Preterm birth disrupts cerebellar development by affecting granule cell proliferation program and Bergmann glia[J]. Exp Neurol, 2018, 306: 209-221. DOI: 10.1016/j.expneurol.2018.05.015.
[13]
KLEIN L, VAN STEENWINCKEL J, FLEISS B, et al. A unique cerebellar pattern of microglia activation in a mouse model of encephalopathy of prematurity[J]. Glia, 2022, 70(9): 1699-1719. DOI: 10.1002/glia.24190.
[14]
ISKUSNYKH I Y, CHIZHIKOV V V. Cerebellar development after preterm birth[J/OL]. Front Cell Dev Biol, 2022, 10: 1068288 [2023-12-25]. https://doi.org/10.3389/fcell.2022.1068288. DOI: 10.3389/fcell.2022.1068288.
[15]
SATHYANESAN A, ZHOU J, SCAFIDI J, et al. Emerging connections between cerebellar development, behaviour and complex brain disorders[J]. Nat Rev Neurosci, 2019, 20(5): 298-313. DOI: 10.1038/s41583-019-0152-2.
[16]
WANG Y, CHEN L, WU Z, et al. Longitudinal development of the cerebellum in human infants during the first 800 days[J/OL]. Cell Rep, 2023, 42(4): 112281 [2023-12-25]. https://doi.org/10.1016/j.celrep.2023.112281. DOI: 10.1016/j.celrep.2023.112281.
[17]
GUI L, LOUKAS S, LAZEYRAS F, et al. Longitudinal study of neonatal brain tissue volumes in preterm infants and their ability to predict neurodevelopmental outcome[J]. Neuroimage, 2019, 185: 728-741. DOI: 10.1016/j.neuroimage.2018.06.034.
[18]
MATTHEWS L G, INDER T E, PASCOE L, et al. Longitudinal preterm cerebellar volume: Perinatal and neurodevelopmental outcome associations[J]. Cerebellum, 2018, 17(5): 610-627. DOI: 10.1007/s12311-018-0946-1.
[19]
BROSSARD-RACINE M, MCCARTER R, MURNICK J, et al. Early extra-uterine exposure alters regional cerebellar growth in infants born preterm[J/OL]. Neuroimage: Clinical, 2019, 21: 101646 [2023-12-25]. https://doi.org/10.1016/j.nicl.2018.101646. DOI: 10.1016/j.nicl.2018.101646.
[20]
WU Y, STOODLEY C, BROSSARD-RACINE M, et al. Altered local cerebellar and brainstem development in preterm infants[J/OL]. Neuroimage, 2020, 213: 116702 [2023-12-25]. https://doi.org/10.1016/j.neuroimage.2020.116702. DOI: 10.1016/j.neuroimage.2020.116702.
[21]
PARIKH M N, CHEN M, BRAIMAH A, et al. Diffusion MRI microstructural abnormalities at term-equivalent age are associated with neurodevelopmental outcomes at 3 years of age in very preterm infants[J]. AJNR Am J Neuroradiol, 2021, 42(8): 1535-1542. DOI: 10.3174/ajnr.A7135.
[22]
LEE H J, KWON H, KIM J I, et al. The cingulum in very preterm infants relates to language and social-emotional impairment at 2 years of term-equivalent age[J/OL]. Neuroimage Clin, 2021, 29: 102528 [2023-12-25]. https://doi.org/10.1016/j.nicl.2020.102528. DOI: 10.1016/j.nicl.2020.102528.
[23]
HUANG W X, WANG X Y, LIU X Y, et al. Application of diffusion tensor imaging and T1WI value measurement on white matter development in preterm infants[J]. Radiol Practice, 2022, 37(1): 94-98. DOI: 10.13609/j.cnki.1000-0313.2022.01.017.
[24]
THOMPSON D K, KELLY C E, CHEN J, et al. Characterisation of brain volume and microstructure at term-equivalent age in infants born across the gestational age spectrum[J/OL]. Neuroimage Clin, 2019, 21: 101630 [2023-12-25]. https://doi.org/10.1016/j.nicl.2018.101630. DOI: 10.1016/j.nicl.2018.101630.
[25]
BOBBA P S, WEBER C F, MAK A, et al. Age‐related topographic map of magnetic resonance diffusion metrics in neonatal brains[J]. Hum Brain Mapp, 2022, 43(14): 4326-4334. DOI: 10.1002/hbm.25956.
[26]
QIU A, MORI S, MILLER M I. Diffusion tensor imaging for understanding brain development in early life[J]. Annu Rev Psychol, 2015, 66(1): 853-876. DOI: 10.1146/annurev-psych-010814-015340.
[27]
BORCHERS L R, BRUCKERT L, CHAHAL R, et al. White matter microstructural properties of the cerebellar peduncles predict change in symptoms of psychopathology in adolescent girls[J]. Cerebellum, 2021, 21(3): 380-390. DOI: 10.1007/s12311-021-01307-x.
[28]
GUO L L, WANG D H, ZHANG H, et al. Diffusion tensor imaging for the development of neonatal brain myelin[J]. Chin J Magn Reson Imaging, 2019, 10(10): 748-751. DOI: 10.12015/issn.1674-8034.2019.10.006.
[29]
Y-H CHOI, LEE J-M, LEE J Y, et al. Delayed maturation of the middle cerebellar peduncles at near-term age predicts abnormal neurodevelopment in preterm infants[J]. Neonatology, 2021, 118(1): 37-46. DOI: 10.1159/000512921.
[30]
MORITA T, MORIMOTO M, YAMADA K, et al. Low-grade intraventricular hemorrhage disrupts cerebellar white matter in preterm infants: evidence from diffusion tensor imaging[J]. Neuroradiology, 2015, 57(5): 507-514. DOI: 10.1007/s00234-015-1487-7.
[31]
PIETERMAN K, WHITE T J, VAN DEN BOSCH G E, et al. Cerebellar growth impairment characterizes school-aged children born preterm without perinatal brain lesions[J]. AJNR Am J Neuroradiol, 2018, 39(5): 956-962. DOI: 10.3174/ajnr.A5589.
[32]
DISSELHOFF V, JAKAB A, SCHNIDER B, et al. Inhibition is associated with whole-brain structural brain connectivity on network level in school-aged children born very preterm and at term[J/OL]. Neuroimage, 2020, 218: 116937 [2023-12-25]. https://doi.org/10.1016/j.neuroimage.2020.116937. DOI: 10.1016/j.neuroimage.2020.116937.
[33]
SAHA S, PAGNOZZI A, BOURGEAT P, et al. Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model[J/OL]. Neuroimage, 2020, 15, 215: 116807 [2023-12-25]. https://pubmed.ncbi.nlm.nih.gov/32278897/. DOI: 10.1016/j.neuroimage.2020.116807.
[34]
MARTINEZ-HERAS E, GRUSSU F, PRADOS F, et al. Diffusion-weighted imaging: Recent advances and applications[J]. Semin Ultrasound CT MR, 2021, 42(5): 490-506. DOI: 10.1053/j.sult.2021.07.006.
[35]
ZHANG C, ZHU Z, WANG K, et al. Assessment of brain structure and volume reveals neurodevelopmental abnormalities in preterm infants with low-grade intraventricular hemorrhage[J/OL]. Sci Rep, 2024, 14(1): 5709 [2023-12-25]. https://pubmed.ncbi.nlm.nih.gov/38459090/. DOI: 10.1038/s41598-024-56148-5.
[36]
YANG W R, CHEN B. Application of MRI diffusion imaging in temporal lobe epilepsy[J]. Chin J Magn Reson Imaging, 2024, 15(1): 184-188. DOI: 10.12015/issn.1674-8034.2024.01.031.
[37]
BATALLE D, HUGHES E J, ZHANG H, et al. Early development of structural networks and the impact of prematurity on brain connectivity[J]. Neuroimage, 2017, 149: 379-392. DOI: 10.1016/j.neuroimage.2017.01.065.
[38]
LACCETTA G, NARDO M C D, CELLITTI R, et al. 1H-magnetic resonance spectroscopy and its role in predicting neurodevelopmental impairment in preterm neonates: A systematic review[J]. Neuroradiol J, 2022, 35(6): 667-677. DOI: 10.1177/19714009221102454.
[39]
CEBECI B, ALDERLIESTEN T, WIJNEN J P, et al. Brain proton magnetic resonance spectroscopy and neurodevelopment after preterm birth: a systematic review[J]. Pediatr Res, 2022, 91(6): 1322-1333. DOI: 10.1038/s41390-021-01539-x.
[40]
BASU S K, PRADHAN S, DU PLESSIS A J, et al. GABA and glutamate in the preterm neonatal brain: In-vivo measurement by magnetic resonance spectroscopy[J/OL]. Neuroimage, 2021, 238: 118215 [2023-12-25]. https://doi.org/10.1016/j.neuroimage.2021.118215. DOI: 10.1016/j.neuroimage.2021.118215.
[41]
BROSSARD-RACINE M, MURNICK J, BOUYSSI-KOBAR M, et al. Altered cerebellar biochemical profiles in infants born prematurely[J/OL]. Sci Rep, 2017, 7(1): 8143 [2023-12-25]. https://doi.org/10.1038/s41598-017-08195-4. DOI: 10.1038/s41598-017-08195-4.
[42]
BASU S K, PRADHAN S, KAPSE K, et al. Third trimester cerebellar metabolite concentrations are decreased in very premature infants with structural brain injury[J/OL]. Sci Rep, 2019, 9(1): 1212 [2023-12-25]. https://doi.org/10.1038/s41598-018-37203-4. DOI: 10.1038/s41598-018-37203-4.
[43]
BASU S K, PRADHAN S, SHARKER Y M, et al. Severity of prematurity and age impact early postnatal development of GABA and glutamate systems[J]. Cereb Cortex, 2023, 33(12): 7386-7394. DOI: 10.1093/cercor/bhad046.
[44]
VAN KOOIJ B J M, BENDERS M J N L, ANBEEK P, et al. Cerebellar volume and proton magnetic resonance spectroscopy at term, and neurodevelopment at 2 years of age in preterm infants[J]. Dev Med Child Neurol, 2011, 54(3): 260-266. DOI: 10.1111/j.1469-8749.2011.04168.x.
[45]
WANG N, LI X Y. Progress in neurodevelopmental assessment of premature infants[J]. Chin J Child Health Care, 2023, 31(4): 404-407, 432. DOI: 10.11852/zgetbjzz2022-0574.
[46]
HE L, PARIKH N A. Brain functional network connectivity development in very preterm infants: The first six months[J]. Early Hum Dev, 2016, 98: 29-35. DOI: 10.1016/j.earlhumdev.2016.06.002.
[47]
HERZMANN C S, SNYDER A Z, KENLEY J K, et al. Cerebellar functional connectivity in term- and very preterm-born infants[J]. Cereb Cortex, 2019, 29(3): 1174-1184. DOI: 10.1093/cercor/bhy023.
[48]
UUSITALO K, HAATAJA L, SAUNAVAARA V, et al. Performance in hand coordination tasks and concurrent functional MRI findings in 13-year-olds born very preterm[J]. Pediatr Neurol, 2021, 123: 21-29. DOI: 10.1016/j.pediatrneurol.2021.07.001.
[49]
LIND A, HAATAJA L, LAASONEN M, et al. Functional magnetic resonance imagingduring visual perception tasks in adolescents born prematurely[J]. J Int Neuropsychol Soc, 2020, 27(3): 270-281. DOI: 10.1017/S1355617720000867.
[50]
WANG J, LI J, YIN X, et al. The value of arterial spin labeling imaging in the classification and prognostic evaluation of neonatal hypoxic-ischemic encephalopathy[J]. Curr Neurovasc Res, 2021, 18(3): 307-313. DOI: 10.2174/1567202618666210920112001.
[51]
ZHENG Q, FREEMAN C W, HWANG M. Sex-related differences in arterial spin-labelled perfusion of metabolically active brain structures in neonatal hypoxic–ischaemicenc ephalopathy[J]. Clin Radiol, 2021, 76(5): 342-347. DOI: 10.1016/j.crad.2020.12.026.
[52]
GAO M, LIU Y Q, SONG Y R, et al. Application of magnetic resonance arterial spin labeling in cerebral perfusion in preterm infants[J]. J Clin Radiol, 2019, 38(10): 1939-1942. DOI: 10.13437/j.cnki.jcr.2019.10.033.
[53]
PICCIRILLI E, CHIARELLI A M, SESTIERI C, et al. Cerebral blood flow patterns in preterm and term neonates assessed with pseudo‐continuous arterial spin labeling perfusion MRI[J]. Hum Brain Mapp, 2023, 44(9): 3833-3844. DOI: 10.1002/hbm.26315.
[54]
ZUN Z, KAPSE K, JACOBS M, et al. Longitudinal trajectories of regional cerebral blood flow in very preterm infants during third trimester ex utero development assessed with MRI[J]. Radiology, 2021, 299(3): 691-702. DOI: 10.1148/radiol.2021202423.
[55]
TORTORA D, MATTEI P A, NAVARRA R, et al. Prematurity and brain perfusion: Arterial spin labeling MRI[J]. Neuroimage Clin, 2017, 15: 401-407. DOI: 10.1016/j.nicl.2017.05.023.

PREV Research progress of magnetic resonance imaging in amygdala of major depressive disorder
NEXT Research progress of acupuncture in the treatment of post-stroke aphasia based on multimodal magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn