Share:
Share this content in WeChat
X
Review
Progress in imaging research on the blood-brain barrier associated with Alzheimer's disease
WANG Bingbing  LUO Yu  BAI Yan  WU Yaping  SHEN Yu  WANG Meiyun 

Cite this article as: WANG B B, LUO Y, BAI Y, et al. Progress in imaging research on the blood-brain barrier associated with Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2024, 15(4): 192-196. DOI:10.12015/issn.1674-8034.2024.04.032.


[Abstract] Alzheimer's disease (AD) is the most common cause of dementia in the elderly people, and its pathogenesis remains unclear. Research has found that blood-brain barrier (BBB) injury is tightly associated with AD pathology and plays a crucial role in the pathogenesis and progression of AD. Imaging technology is an effective method for exploring changes in the structure and function of BBB. This article will summarize the internal relationship between BBB injury and AD pathology and the current application status of imaging technology in it, in order to provide new ideas for the early diagnosis and treatment of AD.
[Keywords] Alzheimer's disease;blood-brain barrier;magnetic resonance imaging;positron emission tomography;magnetic resonance-guided focused ultrasound

WANG Bingbing1, 2   LUO Yu1, 2   BAI Yan2   WU Yaping2   SHEN Yu2   WANG Meiyun1, 2*  

1 Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou 450003, China

2 Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China

Corresponding author: WANG M Y, E-mail: mywang@zzu.edu.cn

Conflicts of interest   None.

Received  2023-09-24
Accepted  2024-03-15
DOI: 10.12015/issn.1674-8034.2024.04.032
Cite this article as: WANG B B, LUO Y, BAI Y, et al. Progress in imaging research on the blood-brain barrier associated with Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2024, 15(4): 192-196. DOI:10.12015/issn.1674-8034.2024.04.032.

[1]
LIU P P, XIE Y, MENG X Y, et al. History and progress of hypotheses and clinical trials for Alzheimer's disease[J/OL]. Signal Transduct Target Ther, 2019, 4: 29 [2023-09-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/31637009/. DOI: 10.1038/s41392-019-0063-8.
[2]
TROUTWINE B R, HAMID L, LYSAKER C R, et al. Apolipoprotein E and Alzheimer's disease[J]. Acta Pharm Sin B, 2022, 12(2): 496-510. DOI: 10.1016/j.apsb.2021.10.002.
[3]
SEGURA-COLLAR B, MATA-MARTÍNEZ P, HERNÁNDEZ-LAÍN A, et al. Blood-brain barrier disruption: A common driver of central nervous system diseases[J]. Neuroscientist, 2022, 28(3): 222-237. DOI: 10.1177/1073858420985838.
[4]
YAMAZAKI Y, KANEKIYO T. Blood-brain barrier dysfunction and the pathogenesis of Alzheimer's disease[J/OL]. Int J Mol Sci, 2017, 18(9): 1965 [2023-09-24]. https://www.mdpi.com/resolver?pii=ijms18091965. DOI: 10.3390/ijms18091965.
[5]
MONTAGNE A, ZHAO Z, ZLOKOVIC B V. Alzheimer's disease: A matter of blood-brain barrier dysfunction?[J]. J Exp Med, 2017, 214(11): 3151-3169. DOI: 10.1084/jem.20171406.
[6]
CAI Z, QIAO P F, WAN C Q, et al. Role of blood-brain barrier in Alzheimer's disease[J]. J Alzheimers Dis, 2018, 63(4): 1223-1234. DOI: 10.3233/jad-180098.
[7]
LANGEN U H, AYLOO S, GU C. Development and cell biology of the blood-brain barrier[J]. Annu Rev Cell Dev Biol, 2019, 35: 591-613. DOI: 10.1146/annurev-cellbio-100617-062608.
[8]
PANDIT R, CHEN L, GÖTZ J. The blood-brain barrier: Physiology and strategies for drug delivery[J]. Adv Drug Deliv Rev, 2020, 165-166: 1-14. DOI: 10.1016/j.addr.2019.11.009.
[9]
SHARMA C, WOO H, KIM S R. Addressing blood-brain barrier impairment in Alzheimer's disease[J/OL]. Biomedicines, 2022, 10(4): 742 [2023-09-24]. https://www.mdpi.com/resolver?pii=biomedicines10040742. DOI: 10.3390/biomedicines10040742.
[10]
HALDER S K, SAPKOTA A, MILNER R. The importance of laminin at the blood-brain barrier[J]. Neural Regen Res, 2023, 18(12): 2557-2563. DOI: 10.4103/1673-5374.373677.
[11]
SWEENEY M D, ZHAO Z, MONTAGNE A, et al. Blood-brain barrier: From physiology to disease and back[J]. Physiol Rev, 2019, 99(1): 21-78. DOI: 10.1152/physrev.00050.2017.
[12]
BENZ F, LIEBNER S. Structure and function of the blood-brain barrier (BBB)[J]. Handb Exp Pharmacol, 2022, 273: 3-31. DOI: 10.1007/164_2020_404.
[13]
OKSANEN M, LEHTONEN S, JARONEN M, et al. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms[J]. Cell Mol Life Sci, 2019, 76(14): 2739-2760. DOI: 10.1007/s00018-019-03111-7.
[14]
KNOX E G, ABURTO M R, CLARKE G, et al. The blood-brain barrier in aging and neurodegeneration[J]. Mol Psychiatry, 2022, 27(6): 2659-2673. DOI: 10.1038/s41380-022-01511-z.
[15]
KADRY H, NOORANI B, CUCULLO L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity[J/OL]. Fluids Barriers CNS, 2020, 17(1): 69 [2023-09-24]. https://pubmed.ncbi.nlm.nih.gov/33208141/. DOI: 10.1186/s12987-020-00230-3.
[16]
RIHANI S B AL, BATARSEH Y S, KADDOUMI A. The Blood-Brain Barrier in Health and Disease[J/OL]. Int J Mol Sci, 2023, 24(11): 9261 [2023-09-24]. https://www.mdpi.com/resolver?pii=ijms24119261. DOI: 10.3390/ijms24119261.
[17]
SILVERBERG N, ELLIOTT C, RYAN L, et al. NIA commentary on the NIA-AA Research Framework: Towards a biological definition of Alzheimer's disease[J]. Alzheimers Dement, 2018, 14(4): 576-578. DOI: 10.1016/j.jalz.2018.03.004.
[18]
WANG D, CHEN F, HAN Z, et al. Relationship between amyloid-β deposition and blood-brain barrier dysfunction in Alzheimer's disease[J/OL]. Front Cell Neurosci, 2021, 15: 695479 [2023-09-24]. https://doi.org/10.3389/fncel.2021.695479. DOI: 10.3389/fncel.2021.695479.
[19]
BLAIR L J, FRAUEN H D, ZHANG B, et al. Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy[J/OL]. Acta Neuropathol Commun, 2015, 3: 8 [2023-09-24]. https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-015-0186-2. DOI: 10.1186/s40478-015-0186-2.
[20]
MICHALICOVA A, MAJEROVA P, KOVAC A. Tau Protein and Its Role in Blood-Brain Barrier Dysfunction[J/OL]. Front Mol Neurosci, 2020, 13: 570045 [2023-09-24]. https://doi.org/10.3389/fnmol.2020.570045. DOI: 10.3389/fnmol.2020.570045.
[21]
WANG M, ZHANG H, LIANG J, et al. Exercise suppresses neuroinflammation for alleviating Alzheimer's disease[J/OL]. J Neuroinflammation, 2023, 20(1): 76 [2023-09-24]. https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-023-02753-6. DOI: 10.1186/s12974-023-02753-6.
[22]
HUANG X, HUSSAIN B, CHANG J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms[J]. CNS Neurosci Ther, 2021, 27(1): 36-47. DOI: 10.1111/cns.13569.
[23]
ZHOU X, SHI Q, ZHANG X, et al. ApoE4-mediated blood-brain barrier damage in Alzheimer's disease: Progress and prospects[J/OL]. Brain Res Bull, 2023, 199: 110670 [2023-09-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36935511/. DOI: 10.1016/j.brainresbull.2023.110670.
[24]
SILVA I, SILVA J, FERREIRA R, et al. Glymphatic system, AQP4, and their implications in Alzheimer's disease[J/OL]. Neurol Res Pract, 2021, 3(1): 5 [2023-09-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/33499944/. DOI: 10.1186/s42466-021-00102-7.
[25]
BERNAL J, VALDÉS-HERNÁNDEZ M D C, ESCUDERO J, et al. A four-dimensional computational model of dynamic contrast-enhanced magnetic resonance imaging measurement of subtle blood-brain barrier leakage[J/OL]. Neuroimage, 2021, 230: 117786 [2023-09-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/33497771/. DOI: 10.1016/j.neuroimage.2021.117786.
[26]
MONTAGNE A, BARNES S R, SWEENEY M D, et al. Blood-brain barrier breakdown in the aging human hippocampus[J]. Neuron, 2015, 85(2): 296-302. DOI: 10.1016/j.neuron.2014.12.032.
[27]
MONTAGNE A, HUUSKONEN M T, RAJAGOPAL G, et al. Undetectable gadolinium brain retention in individuals with an age-dependent blood-brain barrier breakdown in the hippocampus and mild cognitive impairment[J]. Alzheimers Dement, 2019, 15(12): 1568-1575. DOI: 10.1016/j.jalz.2019.07.012.
[28]
MOON Y, JEON H J, HAN S H, et al. Blood-brain barrier breakdown is linked to tau pathology and neuronal injury in a differential manner according to amyloid deposition[J/OL]. J Cereb Blood Flow Metab, 2023: 271678x231180035 [2023-09-24]. https://journals.sagepub.com/doi/10.1177/0271678X231180035. DOI: 10.1177/0271678x231180035.
[29]
MONTAGNE A, NATION D A, SAGARE A P, et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline[J]. Nature, 2020, 581(7806): 71-76. DOI: 10.1038/s41586-020-2247-3.
[30]
LIN Z, LI Y, SU P, et al. Non-contrast MR imaging of blood-brain barrier permeability to water[J]. Magn Reson Med, 2018, 80(4): 1507-1520. DOI: 10.1002/mrm.27141.
[31]
SHAO X, MA S J, CASEY M, et al. Mapping water exchange across the blood-brain barrier using 3D diffusion-prepared arterial spin labeled perfusion MRI[J]. Magn Reson Med, 2019, 81(5): 3065-3079. DOI: 10.1002/mrm.27632.
[32]
LIN Z, SUR S, LIU P, et al. Blood-brain barrier breakdown in relationship to Alzheimer and vascular disease[J]. Ann Neurol, 2021, 90(2): 227-238. DOI: 10.1002/ana.26134.
[33]
GOLD B T, SHAO X, SUDDUTH T L, et al. Water exchange rate across the blood-brain barrier is associated with CSF amyloid-β 42 in healthy older adults[J]. Alzheimers Dement, 2021, 17(12): 2020-2029. DOI: 10.1002/alz.12357.
[34]
BAI R, LI Z, SUN C, et al. Feasibility of filter-exchange imaging (FEXI) in measuring different exchange processes in human brain[J/OL]. Neuroimage, 2020, 219: 117039 [2023-09-24]. https://linkinghub.elsevier.com/retrieve/pii/S1053-8119(20)30525-5. DOI: 10.1016/j.neuroimage.2020.117039.
[35]
OHENE Y, HARRIS W J, POWELL E, et al. Filter exchange imaging with crusher gradient modelling detects increased blood-brain barrier water permeability in response to mild lung infection[J/OL]. Fluids Barriers CNS, 2023, 20(1): 25 [2023-09-24]. https://fluidsbarrierscns.biomedcentral.com/articles/10.1186/s12987-023-00422-7. DOI: 10.1186/s12987-023-00422-7.
[36]
WANG Z, WANG B, LI Z, et al. The consistence of dynamic contrast-enhanced MRI and filter-exchange imaging in measuring water exchange across the blood-brain barrier in high-grade glioma[J]. J Magn Reson Imaging, 2023, 58(6): 1850-1860. DOI: 10.1002/jmri.28729.
[37]
ZHANG Y, WANG Y, LI Z, et al. Vascular-water-exchange MRI (VEXI) enables the detection of subtle AXR alterations in Alzheimer's disease without MRI contrast agent, which may relate to BBB integrity[J/OL]. Neuroimage, 2023, 270: 119951 [2023-09-24]. https://linkinghub.elsevier.com/retrieve/pii/S1053-8119(23)00097-6. DOI: 10.1016/j.neuroimage.2023.119951.
[38]
NAKAMURA M, NESTOR P G, SHENTON M E. Orbitofrontal sulcogyral pattern as a transdiagnostic trait marker of early neurodevelopment in the social brain[J]. Clin EEG Neurosci, 2020, 51(4): 275-284. DOI: 10.1177/1550059420904180.
[39]
AGGLETON J P, PRALUS A, NELSON A J, et al. Thalamic pathology and memory loss in early Alzheimer's disease: moving the focus from the medial temporal lobe to Papez circuit[J]. Brain, 2016, 139(Pt 7): 1877-1890. DOI: 10.1093/brain/aww083.
[40]
KNUDSEN E B, WALLIS J D. Taking stock of value in the orbitofrontal cortex[J]. Nat Rev Neurosci, 2022, 23(7): 428-438. DOI: 10.1038/s41583-022-00589-2.
[41]
CHEN L Y. Quantitative characterization of the path of glucose diffusion facilitated by human glucose transporter 1[J/OL]. Biochim Biophys Acta Biomembr, 2022, 1864(9): 183975 [2023-09-24]. https://linkinghub.elsevier.com/retrieve/pii/S0005-2736(22)00113-4. DOI: 10.1016/j.bbamem.2022.183975.
[42]
ARDANAZ C G, RAMÍREZ M J, SOLAS M. Brain Metabolic Alterations in Alzheimer's Disease[J/OL]. Int J Mol Sci, 2022, 23(7): 3785 [2023-09-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/35409145/. DOI: 10.3390/ijms23073785.
[43]
WANG Q, DUAN L, LI X, et al. Glucose Metabolism, Neural Cell Senescence and Alzheimer's Disease[J/OL]. Int J Mol Sci, 2022, 23(8): 4351 [2023-09-24]. https://www.mdpi.com/resolver?pii=ijms23084351. DOI: 10.3390/ijms23084351.
[44]
LI Q, YUE X P, BAI Y, et al. Application value of multi-modal imaging technique in early diagnosis of Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2022, 13(11): 110-114. DOI: 10.12015/issn.1674-8034.2022.11.021.
[45]
VAN ASSEMA D M, LUBBERINK M, BAUER M, et al. Blood-brain barrier P-glycoprotein function in Alzheimer's disease[J]. Brain, 2012, 135(Pt 1): 181-189. DOI: 10.1093/brain/awr298.
[46]
GARCIA-VARELA L, MOSSEL P, AGUIAR P, et al. Dose-response assessment of cerebral P-glycoprotein inhibition in vivo with [(18)F]MC225 and PET[J]. J Control Release, 2022, 347: 500-507. DOI: 10.1016/j.jconrel.2022.05.026.
[47]
BURGESS A, DUBEY S, YEUNG S, et al. Alzheimer disease in a mouse model: MR imaging-guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior[J]. Radiology, 2014, 273(3): 736-745. DOI: 10.1148/radiol.14140245.
[48]
KRISHNA V, SAMMARTINO F, REZAI A. A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: Advances in diagnosis and treatment[J]. JAMA Neurol, 2018, 75(2): 246-254. DOI: 10.1001/jamaneurol.2017.3129.
[49]
LIPSMAN N, MENG Y, BETHUNE A J, et al. Blood-brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound[J/OL]. Nat Commun, 2018, 9(1): 2336 [2023-09-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/30046032/. DOI: 10.1038/s41467-018-04529-6.
[50]
REZAI A R, RANJAN M, D'HAESE P F, et al. Noninvasive hippocampal blood-brain barrier opening in Alzheimer's disease with focused ultrasound[J]. Proc Natl Acad Sci U S A, 2020, 117(17): 9180-9122. DOI: 10.1073/pnas.2002571117.
[51]
MENG Y, GOUBRAN M, RABIN J S, et al. Blood–brain barrier opening of the default mode network in Alzheimer's disease with magnetic resonance-guided focused ultrasound[J]. Brain, 2023, 146(3): 865-872. DOI: 10.1093/brain/awac459.

PREV Research progress of acupuncture in the treatment of post-stroke aphasia based on multimodal magnetic resonance imaging
NEXT The application of diffusion magnetic resonance imaging-based brain tissue microstructure imaging in the diagnosis and treatment of brain tumors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn