Share:
Share this content in WeChat
X
Review
The application of diffusion magnetic resonance imaging-based brain tissue microstructure imaging in the diagnosis and treatment of brain tumors
HU Zhixuan  MAO Chunping  WANG Mengzhu  YAN Xu  MAO Jiaji  SHEN Jun 

Cite this article as: HU Z X, MAO C P, WANG M Z, et al. The application of diffusion magnetic resonance imaging-based brain tissue microstructure imaging in the diagnosis and treatment of brain tumors[J]. Chin J Magn Reson Imaging, 2024, 15(4): 197-206. DOI:10.12015/issn.1674-8034.2024.04.033.


[Abstract] Diffusion MRI (dMRI) is an imaging technique that utilizes signal contrast generated by the changes in degree and direction of water molecules during the diffusion process. The effectiveness of dMRI primarily relies on the acquisition of MR signals and the fitting models employed. dMRI has significant applications in non-invasively revealing the microstructural features of brain tissue and brain diseases. In recent years, innovative diffusion encoding models such as multidimensional diffusion (MDD), novel signal models such as mean apparent propagator MRI (MAP-MRI), and new compartment models such as neurite orientation dispersion and density imaging (NODDI), have been continuously proposed, which have greatly propelled the advancement of brain tissue microstructure imaging techniques. This article offers a comprehensive review of the current advancements in diverse brain tissue microstructure imaging technologies utilizing dMRI, focusing on signal acquisition and model fitting. It explores their initial use in prevalent brain tumors like gliomas and brain metastases, emphasizing clinical concerns such as distinguishing between different types of tumors, determining tumor grades, molecular subtyping, evaluating treatment effectiveness, and predicting patient prognosis. Moving forward, there is a need to enhance the imaging parameters of dMRI-based brain tissue microstructure imaging technologies by optimizing factors like b-value ranges and imaging duration. Moreover, further research and comparison are required to assess the utility of various innovative brain tissue microstructure imaging technologies in addressing the aforementioned critical clinical issues. The goal is to advance the development and clinical implementation of dMRI-based brain tissue microstructure imaging technologies, uncovering the unique features of brain tumors from a microscopic morphology perspective and providing substantial evidence for early diagnosis, differential diagnosis, tumor grading, molecular subtyping, and prognosis forecasting in brain tumor cases.
[Keywords] brain neoplasms;diffusion magnetic resonance imaging;magnetic resonance imaging;diffusion encoding;signal model;compartment model

HU Zhixuan1   MAO Chunping1   WANG Mengzhu2   YAN Xu2   MAO Jiaji1   SHEN Jun1*  

1 Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China

2 MR Scientific Marketing, Siemens Medical Systems Co., Ltd, Shanghai 201318, China

Corresponding author: SHEN J, E-mail: shenjun@mail.sysu.edu.cn

Conflicts of interest   None.

Received  2023-10-18
Accepted  2024-03-15
DOI: 10.12015/issn.1674-8034.2024.04.033
Cite this article as: HU Z X, MAO C P, WANG M Z, et al. The application of diffusion magnetic resonance imaging-based brain tissue microstructure imaging in the diagnosis and treatment of brain tumors[J]. Chin J Magn Reson Imaging, 2024, 15(4): 197-206. DOI:10.12015/issn.1674-8034.2024.04.033.

[1]
SCHAEFER P W, GRANT P E, GONZALEZ R G. Diffusion-weighted MR imaging of the brain[J]. Radiology, 2000, 217(2): 331-345. DOI: 10.1148/radiology.217.2.r00nv24331.
[2]
NOVIKOV D S, FIEREMANS E, JESPERSEN S N, et al. Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation[J/OL]. NMR Biomed, 2019, 32(4): e3998 [2023-10-18]. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.3998. DOI: 10.1002/nbm.3998.
[3]
MASUTANI Y. Recent advances in parameter inference for diffusion MRI signal models[J]. Magn Reson Med Sci, 2022, 21(1): 132-147. DOI: 10.2463/mrms.rev.2021-0005.
[4]
SUH C H, KIM H S, JUNG S C, et al. Imaging prediction of isocitrate dehydrogenase (IDH) mutation in patients with glioma: a systemic review and meta-analysis[J]. Eur Radiol, 2019, 29(2): 745-758. DOI: 10.1007/s00330-018-5608-7.
[5]
TUCH D S. Q-ball imaging[J]. Magn Reson Med, 2004, 52(6): 1358-1372. DOI: 10.1002/mrm.20279.
[6]
GKOTSOULIAS D G, MULLER R, JAGER C, et al. High angular resolution susceptibility imaging and estimation of fiber orientation distribution functions in primate brain[J/OL]. Neuroimage, 2023, 276: 120202 [2023-10-18]. https://www.sciencedirect.com/science/article/pii/S1053811923003531?via%3Dihub. DOI: 10.1016/j.neuroimage.2023.120202.
[7]
LI H, GORE J C, XU J. Fast and robust measurement of microstructural dimensions using temporal diffusion spectroscopy[J]. J Magn Reson, 2014, 242: 4-9. DOI: 10.1016/j.jmr.2014.02.007.
[8]
MARTINEZ-HERAS E, GRUSSU F, PRADOS F, et al. Diffusion-weighted imaging: Recent advances and applications[J]. Semin Ultrasound CT MR, 2021, 42(5): 490-506. DOI: 10.1053/j.sult.2021.07.006.
[9]
CHAKWUZURA A, WESTIN CF, BRABEC J, et al. Diffusion MRI with pulsed and free gradient waveforms: Effects of restricted diffusion and exchange[J/OL]. NMR Biomed, 2023, 36(1): e4827 [2023-10-18]. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.4827. DOI: 10.1002/nbm.4827.
[10]
SHEMESH N, ÁLVAREZ G A, FRYDMAN L. Size distribution imaging by non-uniform oscillating-gradient spin echo (NOGSE) MRI[J/OL]. PLoS One, 2015, 10(7): e0133201 [2023-10-18]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133201. DOI: 10.1371/journal.pone.0133201.
[11]
JIANG X, LI H, DEVAN S P, et al. MR cell size imaging with temporal diffusion spectroscopy[J]. Magn Reson Imaging, 2021, 77: 109-123. DOI: 10.1016/j.mri.2020.12.010.
[12]
LUNDELL H, NILSSON M, DYRBY T B, et al. Multidimensional diffusion MRI with spectrally modulated gradients reveals unprecedented microstructural detail[J/OL]. Sci Rep, 2019, 9(1): 9026 [2023-10-18]. https://pubmed.ncbi.nlm.nih.gov/31227745/. DOI: 10.1038/s41598-019-45235-7.
[13]
NILSSON M, SZCZEPANKIEWICZ F, BRABEC J, et al. Tensor-valued diffusion MRI in under 3 minutes: an initial survey of microscopic anisotropy and tissue heterogeneity in intracranial tumors[J]. Magn Reson Med, 2020, 83(2): 608-620. DOI: 10.1002/mrm.27959.
[14]
SYED NASSER N, RAJAN S, VENUGOPAL V K, et al. A review on investigation of the basic contrast mechanism underlying multidimensional diffusion MRI in assessment of neurological disorders[J]. J Clin Neurosci, 2022, 102: 26-35. DOI: 10.1016/j.jocn.2022.05.027.
[15]
WESTIN C F, KNUTSSON H, PASTERNAK O, et al. Q-space trajectory imaging for multidimensional diffusion MRI of the human brain[J]. Neuroimage, 2016, 135: 345-362. DOI: 10.1016/j.neuroimage.2016.02.039.
[16]
SIOHOLM T, TARAI S, MALMBRRG F, et al. A whole-body diffusion MRI normal atlas: development, evaluation and initial use[J/OL]. Cancer Imaging, 2023, 23(1): 87 [2023-10-18]. https://cancerimagingjournal.biomedcentral.com/articles/10.1186/s40644-023-00603-5. DOI: 10.1186/s40644-023-00603-5.
[17]
BASSER P J. Relationships between diffusion tensor and q-space MRI[J]. Magn Reson Med, 2002, 47(2): 392-397. DOI: 10.1002/mrm.10052.
[18]
BAI Y, LIN Y, TIAN J, et al. Grading of Gliomas by Using Monoexponential, Biexponential, and Stretched Exponential Diffusion-weighted MR Imaging and Diffusion Kurtosis MR Imaging[J]. Radiology, 2016, 278(2): 496-504. DOI: 10.1148/radiol.2015142173.
[19]
ZHONG Z, MERKITCH D, KARAMAN M M, et al. High-spatial-resolution diffusion MRI in Parkinson disease: Lateral asymmetry of the substantia nigra[J]. Radiology, 2019, 291(1): 149-157. DOI: 10.1148/radiol.2019181042.
[20]
ZHOU X J, GAO Q, ABDULLAH O, et al. Studies of anomalous diffusion in the human brain using fractional order calculus[J]. Magn Reson Med, 2010, 63(3): 562-569. DOI: 10.1002/mrm.22285.
[21]
TUCH D S, REESE T G, WIEGELL M R, et al. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity[J]. Magn Reson Med, 2002, 48(4): 577-582. DOI: 10.1002/mrm.10268.
[22]
WEDEEN V J, HAGMANN P, TSENG W Y, et al. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging[J]. Magn Reson Med, 2005, 54(6): 1377-1386. DOI: 10.1002/mrm.20642.
[23]
LUO S P, CHEN F F, ZHANG H W, et al. Trigeminal nerve white matter fiber abnormalities in primary trigeminal neuralgia: A diffusion spectrum imaging study[J/OL]. Front Neurol, 2021, 12: 798969 [2023-10-18]. https://www.frontiersin.org/articles/10.3389/fneur.2021.798969/full. DOI: 10.3389/fneur.2021.798969.
[24]
MAO J, ZENG W, ZHANG Q, et al. Differentiation between high-grade gliomas and solitary brain metastases: a comparison of five diffusion-weighted MRI models[J/OL]. BMC Med Imaging, 2020, 20(1): 124 [2023-10-18]. https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-020-00524-w. DOI: 10.1186/s12880-020-00524-w.
[25]
AVRAM A V, SAALEEM K S, KOMLOSH M E, et al. High-resolution cortical MAP-MRI reveals areal borders and laminar substructures observed with histological staining[J/OL]. Neuroimage, 2022, 264: 119653 [2023-10-18]. https://www.sciencedirect.com/science/article/pii/S1053811922007686?via%3Dihub. DOI: 10.1016/j.neuroimage.2022.119653.
[26]
STANISZ G J, SZAFER A, WRIGHT G A, et al. An analytical model of restricted diffusion in bovine optic nerve[J]. Magn Reson Med, 1997, 37(1): 103-111. DOI: 10.1002/mrm.1910370115.
[27]
BEHRENS T E, WOOLRICH M W, JENKINSON M, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging[J]. Magn Reson Med, 2003, 50(5): 1077-1088. DOI: 10.1002/mrm.10609.
[28]
ASSAF Y, FREIDLIN R Z, ROHDE G K, et al. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter[J]. Magn Reson Med, 2004, 52(5): 965-978. DOI: 10.1002/mrm.20274.
[29]
ASSAF Y, BLUMENFELD-KATZIR T, YOVEL Y, et al. AxCaliber: a method for measuring axon diameter distribution from diffusion MRI[J]. Magn Reson Med, 2008, 59(5): 1347-1354. DOI: 10.1002/mrm.21577.
[30]
ALEXANDER D C, HUBBARD P L, HALL M G, et al. Orientationally invariant indices of axon diameter and density from diffusion MRI[J]. Neuroimage, 2010, 52(4): 1374-1389. DOI: 10.1016/j.neuroimage.2010.05.043.
[31]
FIEREMANS E, JENSEN J H, HELPERN J A. White matter characterization with diffusional kurtosis imaging[J]. Neuroimage, 2011, 58(1): 177-188. DOI: 10.1016/j.neuroimage.2011.06.006.
[32]
JESPERSEN S N, KROENKE C D, ØSTERGAARD L, et al. Modeling dendrite density from magnetic resonance diffusion measurements[J]. Neuroimage, 2007, 34(4): 1473-1486. DOI: 10.1016/j.neuroimage.2006.10.037.
[33]
KADEN E, KELM N D, CARSON R P, et al. Multi-compartment microscopic diffusion imaging[J]. Neuroimage, 2016, 139: 346-359. DOI: 10.1016/j.neuroimage.2016.06.002.
[34]
ZHANG H, SCHNEIDER T, WHEELER-KINGSHOTT C A, et al. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain[J]. Neuroimage, 2012, 61(4): 1000-1016. DOI: 10.1016/j.neuroimage.2012.03.072.
[35]
PANAGIOTAKI E, WALKER-SAMUEL S, SIOW B, et al. Noninvasive quantification of solid tumor microstructure using VERDICT MRI[J]. Cancer Res, 2014, 74(7): 1902-1912. DOI: 10.1158/0008-5472.CAN-13-2511.
[36]
WANG Y, WANG Q, HALDAR J P, et al. Quantification of increased cellularity during inflammatory demyelination[J]. Brain, 2011, 134(Pt 12): 3590-3601. DOI: 10.1093/brain/awr307.
[37]
SCHERRER B, SCHWARTZMAN A, TAQUET M, et al. Characterizing brain tissue by assessment of the distribution of anisotropic microstructural environments in diffusion-compartment imaging (DIAMOND)[J]. Magn Reson Med, 2016, 76(3): 963-977. DOI: 10.1002/mrm.25912.
[38]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[39]
INOUE T, OGASAWARA K, BEPPU T, et al. Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas[J]. Clin Neurol Neurosurg, 2005, 107(3): 174-180. DOI: 10.1016/j.clineuro.2004.06.011.
[40]
MOON W J, CHOI J W, ROH H G, et al. Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging[J]. Neuroradiology, 2012, 54(6): 555-563. DOI: 10.1007/s00234-011-0947-y.
[41]
QIU J, DENG K, WANG P, et al. Application of diffusion kurtosis imaging to the study of edema in solid and peritumoral areas of glioma[J]. Magn Reson Imaging, 2022, 86: 10-16. DOI: 10.1016/j.mri.2021.11.001.
[42]
QU Y, ZHOU L, JIANG J, et al. Combination of three-dimensional arterial spin labeling and stretched-exponential model in grading of gliomas[J/OL]. Medicine (Baltimore), 2019, 98(25): e16012 [2023-10-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6636946/. DOI: 10.1097/MD.0000000000016012.
[43]
ZHANG L, YANG L Q, WEN L, et al. Noninvasively evaluating the grading of glioma by multiparametric magnetic resonance imaging[J]. Acad Radiol, 2021, 28(5): e137-e146 [2023-10-18]. https://linkinghub.elsevier.com/retrieve/pii/S1076-6332(20)30181-1. DOI: 10.1016/j.acra.2020.03.035.
[44]
KARAMAN M M, ZHANG J, XIE K L, et al. Quartile histogram assessment of glioma malignancy using high b-value diffusion MRI with a continuous-time random-walk model[J/OL]. NMR Biomed, 2021, 34(4): e4485 [2023-10-18]. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.4485. DOI: 10.1002/nbm.4485.
[45]
SUI Y, XIONG Y, JIANG J, et al. Differentiation of low- and high-grade gliomas using high b-value diffusion imaging with a non-gaussian diffusion model[J]. AJNR Am J Neuroradiol, 2016, 37(9): 1643-1649. DOI: 10.3174/ajnr.A4836.
[46]
WANG P, WENG L, XIE S, et al. Primary application of mean apparent propagator-MRI diffusion model in the grading of diffuse glioma[J/OL]. Eur J Radiol, 2021, 138: 109622 [2023-10-18]. https://www.sciencedirect.com/science/article/pii/S0720048X21001029?via%3Dihub. DOI: 10.1016/j.ejrad.2021.109622.
[47]
SUN Y, SU C, DENG K, et al. Mean apparent propagator-MRI in evaluation of glioma grade, cellular proliferation, and IDH-1 gene mutation status[J]. Eur Radiol, 2022, 32(6): 3744-3754. DOI: 10.1007/s00330-022-08681-y.
[48]
XIE S H, LANG R, LI B, et al. Evaluation of diffuse glioma grade and proliferation activity by different diffusion-weighted-imaging models including diffusion kurtosis imaging (DKI) and mean apparent propagator (MAP) MRI[J]. Neuroradiology, 2023, 65(1): 55-64. DOI: 10.1007/s00234-022-03000-0.
[49]
WANG X, CHEN X Z, SHI L, et al. Glioma grading and IDH1 mutational status: assessment by intravoxel incoherent motion MRI[J]. Clin Radiol, 2019, 74(8): 651.e7-.e14 [2023-10-18]. https://www.sciencedirect.com/science/article/pii/S0009926019301643?via%3Dihub. DOI: 10.1016/j.crad.2019.03.020.
[50]
GENÇ B, ASLAN K, ÖZÇAĞLAYAN A, et al. The role of MR diffusion kurtosis and neurite orientation dispersion and density imaging in evaluating gliomas[J]. J Neuroimaging, 2023, 33(4): 644-651. DOI: 10.1111/jon.13113.
[51]
ZACCAGNA F, RIEMER F, PRIEST A N, et al. Non-invasive assessment of glioma microstructure using VERDICT MRI: correlation with histology[J]. Eur Radiol, 2019, 29(10): 5559-5566. DOI: 10.1007/s00330-019-6011-8.
[52]
FIGINI M, CASTELLANO A, BAILO M, et al. Comprehensive brain tumour characterisation with VERDICT-MRI: Evaluation of cellular and vascular measures validated by histology[J/OL]. Cancers (Basel), 2023, 15(9): 2490 [2023-10-18]. https://www.mdpi.com/2072-6694/15/9/2490. DOI: 10.3390/cancers15092490.
[53]
ZHANG H, LIU K, BA R, et al. Histological and molecular classifications of pediatric glioma with time-dependent diffusion MRI-based microstructural mapping[J]. Neuro Oncol, 2023, 25(6): 1146-1156. DOI: 10.1093/neuonc/noad003.
[54]
LI S, ZHENG Y, SUN W, et al. Glioma grading, molecular feature classification, and microstructural characterization using MR diffusional variance decomposition(DIVIDE)imaging[J]. Eur Radiol, 2021, 31(11): 8197-8207. DOI: 10.1007/s00330-021-07959-x.
[55]
HUANG Z, LU C, LI G, et al. Prediction of lower grade insular glioma molecular pathology using diffusion tensor imaging metric-based histogram parameters[J/OL]. Front Oncol, 2021, 11: 627202 [2023-10-18]. https://pubmed.ncbi.nlm.nih.gov/33777772/. DOI: 10.3389/fonc.2021.627202.
[56]
GAO A, ZHANG H, YAN X, et al. Whole-tumor histogram analysis of multiple diffusion metrics for glioma genotyping[J]. Radiology, 2022, 302(3): 652-661. DOI: 10.1148/radiol.210820.
[57]
GU T, YANG T, HUANG J, et al. Evaluation of gliomas peritumoral diffusion and prediction of IDH1 mutation by IVIM-DWI[J]. Aging(Albany NY), 2021, 13(7): 9948-9959. DOI: 10.18632/aging.202751.
[58]
ZHAO J, LI J B, WANG J Y, et al. Quantitative analysis of neurite orientation dispersion and density imaging in grading gliomas and detecting IDH-1 gene mutation status[J]. Neuroimage Clin, 2018, 19: 174-181. DOI: 10.1016/j.nicl.2018.04.011.
[59]
ZHOU Q, XUE C, KE X, et al. Treatment response and prognosis evaluation in high-grade glioma: An imaging review based on MRI[J]. J Magn Reson Imaging, 2022, 56(2): 325-340. DOI: 10.1002/jmri.28103.
[60]
JIN Y, RANDALL J W, ELHALAWANI H, et al. Detection of glioblastoma subclinical recurrence using serial diffusion tensor imaging[J/OL]. Cancers (Basel), 2020, 12(3): 568 [2023-10-18]. https://www.mdpi.com/2072-6694/12/3/568. DOI: 10.3390/cancers12030568.
[61]
SHI W, QU C, WANG X, et al. Diffusion kurtosis imaging combined with dynamic susceptibility contrast-enhanced MRI in differentiating high-grade glioma recurrence from pseudoprogression[J]. Eur J Radiol, 2021, 144: 109941 [2023-10-18]. https://www.sciencedirect.com/science/article/pii/S0720048X21004228?via%3Dihub. DOI: 10.1016/j.ejrad.2021.109941.
[62]
WU X F, LIANG X, WANG X C, et al. Differentiating high-grade glioma recurrence from pseudoprogression: Comparing diffusion kurtosis imaging and diffusion tensor imaging[J/OL]. Eur J Radiol, 2021, 135: 109445 [2023-10-18]. https://www.sciencedirect.com/science/article/pii/S0720048X20306355?via%3Dihub. DOI: 10.1016/j.ejrad.2020.109445.
[63]
DANG H, ZHANG J, WANG R, et al. Glioblastoma recurrence versus radiotherapy injury: Combined model of diffusion kurtosis imaging and 11C-MET using PET/MRI may increase accuracy of differentiation[J/OL]. Clin Nucl Med, 2022, 47(6): e428-e436 [2023-10-18]. https://journals.lww.com/nuclearmed/abstract/2022/06000/glioblastoma_recurrence_versus_radiotherapy.25.aspx. DOI: 10.1097/RLU.0000000000004167.
[64]
LIAO D, LIU Y C, LIU J Y, et al. Differentiating tumour progression from pseudoprogression in glioblastoma patients: a monoexponential, biexponential, and stretched-exponential model-based DWI study[J/OL]. BMC Med Imaging, 2023, 23(1): 119 [2023-10-18]. https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-023-01082-7. DOI: 10.1186/s12880-023-01082-7.
[65]
FRIEDRICH M, FARRHER E, CASPERS S, et al. Alterations in white matter fiber density associated with structural MRI and metabolic PET lesions following multimodal therapy in glioma patients[J/OL]. Front Oncol, 2022, 12: 998069 [2023-10-18]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.998069/full. DOI: 10.3389/fonc.2022.998069.
[66]
JIANG X, XU J, GORE J C. Quantitative temporal diffusion spectroscopy as an early imaging biomarker of radiation therapeutic response in gliomas: A preclinical proof of concept[J]. Adv Radiat Oncol, 2019, 4(2): 367-76. DOI: 10.1016/j.adro.2018.11.003.
[67]
JABEHDAR MARALANI P, MYREHAUG S, MEHRABIAN H, et al. Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype glioblastoma[J]. Radiother Oncol, 2021, 156: 258-265. DOI: 10.1016/j.radonc.2020.12.037.
[68]
ONISHI R, SAWAYA R, TSUJI K, et al. Evaluation of temozolomide treatment for glioblastoma using amide proton transfer imaging and diffusion MRI[J/OL]. Cancers (Basel), 2022, 14(8): 1907 [2023-10-18]. https://www.mdpi.com/2072-6694/14/8/1907. DOI: 10.3390/cancers14081907.
[69]
ROBERTS T A, HYARE H, AGLIARDI G, et al. Noninvasive diffusion magnetic resonance imaging of brain tumour cell size for the early detection of therapeutic response[J/OL]. Sci Rep, 2020, 10(1): 9223 [2023-10-18]. https://www.nature.com/articles/s41598-020-65956-4. DOI: 10.1038/s41598-020-65956-4.
[70]
HAN R H, JOHANNS T M, ROBERTS K F, et al. Diffusion basis spectrum imaging as an adjunct to conventional MRI leads to earlier diagnosis of high-grade glioma tumor progression versus treatment effect[J/OL]. Neurooncol Adv, 2023, 5(1): vdad050 [2023-10-18]. https://pubmed.ncbi.nlm.nih.gov/37215950/. DOI: 10.1093/noajnl/vdad050.
[71]
KAMIMURA K, KAMIMURA Y, NAKANO T, et al. Differentiating brain metastasis from glioblastoma by time-dependent diffusion MRI[J/OL]. Cancer Imaging, 2023, 23(1): 75 [2023-10-18]. https://cancerimagingjournal.biomedcentral.com/articles/10.1186/s40644-023-00595-2. DOI: 10.1186/s40644-023-00595-2.
[72]
ULU E, OZTURK B, ATALAY K, et al. Diffusion-Weighted Imaging of Brain Metastasis: Correlation of MRI Parameters with Histologic Type[J]. Turk Neurosurg, 2022, 32(1): 58-68. DOI: 10.5137/1019-5149.JTN.32084-20.4.
[73]
HOLLY K S, FITZ-GERALD J S, BARKER B J, et al. Differentiation of high-grade glioma and intracranial metastasis using volumetric diffusion tensor imaging tractography[J/OL]. World Neurosurg, 2018, 120: e131-e41 [2023-10-18]. https://www.sciencedirect.com/science/article/pii/S1878875018317108?via%3Dihub. DOI: 10.1016/j.wneu.2018.07.230.
[74]
WANG P, GAO E, QI J, et al. Quantitative analysis of mean apparent propagator-magnetic resonance imaging for distinguishing glioblastoma from solitary brain metastasis[J/OL]. Eur J Radiol, 2022, 154: 110430 [2023-10-18]. https://www.sciencedirect.com/science/article/pii/S0720048X22002807?via%3Dihub. DOI: 10.1016/j.ejrad.2022.110430.
[75]
QI J, WANG P, ZHAO G, et al. Histogram analysis based on neurite orientation dispersion and density MR Imaging for differentiation between glioblastoma multiforme and solitary brain metastasis and comparison of the diagnostic performance of two ROI placements[J]. J Magn Reson Imaging, 2023, 57(5): 1464-1474. DOI: 10.1002/jmri.28419.
[76]
LANGBEIN B J, SZCZEPANKIEWICZ F, WESTIN C F, et al. A pilot study of multidimensional diffusion MRI for assessment of tissue heterogeneity in prostate cancer[J]. Invest Radiol, 2021, 56(12): 845-853. DOI: 10.1097/RLI.0000000000000796.
[77]
NARANJO I D, REYMBAUT A, BRYNOLFSSON P, et al. Multidimensional diffusion magnetic resonance imaging for characterization of tissue microstructure in breast cancer patients: A prospective pilot study[J]. Cancers (Basel), 2021, 13(7): 1606 [2023-10-18]. https://www.mdpi.com/2072-6694/13/7/1606. DOI: 10.3390/cancers13071606.
[78]
HUA B, DING X, XIONG M, et al. Alterations of functional and structural connectivity in patients with brain metastases[J/OL]. PLoS One, 2020, 15(5): e0233833 [2023-10-18]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233833. DOI: 10.1371/journal.pone.0233833.
[79]
BENZAKOUN J, ROBERT C, LEGRAND L, et al. Anatomical and functional MR imaging to define tumoral boundaries and characterize lesions in neuro-oncology[J]. Cancer Radiother, 2020, 24(5): 453-462. DOI: 10.1016/j.canrad.2020.03.005.
[80]
SHAH A D, SHRIDHAR KONAR A, PAUDYAL R, et al. Diffusion and perfusion MRI predicts response preceding and shortly after radiosurgery to brain metastases: A pilot study[J]. J Neuroimaging, 2021, 31(2): 317-323. DOI: 10.1111/jon.12828.
[81]
PAWLOSKI J A, FADEL H A, HUANG Y W, et al. Genomic biomarkers of meningioma: A focused review[J/OL]. Int J Mol Sci, 2021, 22(19): 10222 [2023-10-18]. https://www.mdpi.com/1422-0067/22/19/10222. DOI: 10.3390/ijms221910222.
[82]
BRABEC J, SZCZEPANKIEWICZ F, LENNARTSSON F, et al. Histogram analysis of tensor-valued diffusion MRI in meningiomas: Relation to consistency, histological grade and type[J/OL]. Neuroimage Clin, 2022, 33: 102912 [2023-10-18]. https://www.sciencedirect.com/science/article/pii/S2213158221003569?via%3Dihub. DOI: 10.1016/j.nicl.2021.102912.
[83]
HAN T, ZHANG J, LIU X, et al. Differentiating atypical meningioma from anaplastic meningioma using diffusion weighted imaging[J]. Clin Imaging, 2022, 82: 237-243. DOI: 10.1016/j.clinimag.2021.12.004.
[84]
ASLAN K, GUNBEY H P, TOMAK L, et al. The diagnostic value of using combined MR diffusion tensor imaging parameters to differentiate between low-and high-grade meningioma[J/OL]. Br J Radiol, 2018, 91(1088): 20180088 [2023-10-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209476/. DOI: 10.1259/bjr.20180088.
[85]
CHEN X, LIN L, WU J, et al. Histogram analysis in predicting the grade and histological subtype of meningiomas based on diffusion kurtosis imaging[J]. Acta Radiol, 2020, 61(9): 1228-1239. DOI: 10.1177/0284185119898656.
[86]
BOHARA M, NAKAJO M, KAMIMURA K, et al. Histological Grade of Meningioma: Prediction by Intravoxel Incoherent Motion Histogram Parameters[J]. Acad Radiol, 2020, 27(3): 342-353. DOI: 10.1016/j.acra.2019.04.012.
[87]
SHE D, HUANG H, GUO W, et al. Grading meningiomas with diffusion metrics: a comparison between diffusion kurtosis, mean apparent propagator, neurite orientation dispersion and density, and diffusion tensor imaging[J]. Eur Radiol, 2023, 33(5): 3671-381. DOI: 10.1007/s00330-023-09505-3.
[88]
FRANCONERI A, SACCO S, RACITI M V, et al. Intravoxel incoherent motion as a tool to detect early microstructural changes in meningiomas treated with proton therapy[J]. Neuroradiology, 2021, 63(7): 1053-1060. DOI: 10.1007/s00234-020-02630-6.

PREV Progress in imaging research on the blood-brain barrier associated with Alzheimer,s disease
NEXT Research progress of contrast-enhanced T2 FLAIR in intracranial neoplasms imaging diagnosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn