Share:
Share this content in WeChat
X
Review
Research progress of contrast-enhanced T2 FLAIR in intracranial neoplasms imaging diagnosis
LIANG Hongzhong  GUO Rui  XIAO Yunping 

Cite this article as: LIANG H Z, GUO R, XIAO Y P. Research progress of contrast-enhanced T2 FLAIR in intracranial neoplasms imaging diagnosis[J]. Chin J Magn Reson Imaging, 2024, 15(4): 207-213. DOI:10.12015/issn.1674-8034.2024.04.034.


[Abstract] Contrast-enhanced MRI is a radiological assessment tool commonly used in the diagnosis and treatment of intracranial neoplasms. T1WI sequence is clinically the first choice for contrast-enhanced brain MRI. For a long time, contrast-enhanced T2 fluid-attenuated inversion recovery (FLAIR) has been considered as an auxiliary sequence for assessing leptomeningeal diseases and brain metastases. In recent years, studies have continuously reported that contrast-enhanced T2 FLAIR has certain advantages in the detection and differential diagnosis of diseases related to blood-brain barrier, blood-leptomeningeal barrier, blood-cerebrospinal fluid barrier, blood-ocular barrier, blood-labyrinthine barrier and lymphatic system injuries. Although contrast-enhanced T2 FLAIR has demonstrated the tremendous potential in the imaging diagnosis of intracranial neoplasms, contrast-enhanced T2 FLAIR has not been widely used in clinical practice due to the reasons such as: (1) the spectrum of diseases suitable for contrast-enhanced T2 FLAIR has not been fully elucidated, (2) the standard scanning parameters for contrast-enhanced T2 FLAIR have not been determined, (3) it increases the MRI examination time. This article provides an overview of the technical characteristics, normal imaging manifestations, current application status, and latest progress of the contrast-enhanced T2 FLAIR sequence in intracranial neoplasms imaging diagnosis. Provide references for further scientific research and clinical applications in the future.
[Keywords] intracranial neoplasm;magnetic resonance imaging;contrast agent;fluid-attenuated inversion recovery

LIANG Hongzhong1, 2   GUO Rui2, 3   XIAO Yunping2, 3, 4*  

1 Graduate School of Guangxi University of Chinese Medicine, Nanning 530200, China

2 Department of Radiology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou 545006, China

3 Liuzhou Key Laboratory of Molecular Imaging, Liuzhou 545006, China

4 Guangxi Key Laboratory of Clinical Disease Biotechnology, Liuzhou 545006, China

Corresponding author: XIAO Y P, E-mail: xyp22133@sina.com

Conflicts of interest   None.

Received  2024-01-15
Accepted  2024-03-21
DOI: 10.12015/issn.1674-8034.2024.04.034
Cite this article as: LIANG H Z, GUO R, XIAO Y P. Research progress of contrast-enhanced T2 FLAIR in intracranial neoplasms imaging diagnosis[J]. Chin J Magn Reson Imaging, 2024, 15(4): 207-213. DOI:10.12015/issn.1674-8034.2024.04.034.

[1]
WEN P Y, VAN DEN BENT M, YOUSSEF G, et al. RANO 2.0: update to the response assessment in neuro-oncology criteria for high- and low-grade gliomas in adults[J]. J Clin Oncol, 2023, 41(33): 5187-5199. DOI: 10.1200/JCO.23.01059.
[2]
ZHUANG D P, ZHANG H F, HU G W, et al. Recent development of contrast agents for magnetic resonance and multimodal imaging of glioblastoma[J/OL]. J Nanobiotechnology, 2022, 20(1): 284 [2024-01-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204881/. DOI: 10.1186/s12951-022-01479-6.
[3]
MATHEWS V P, CALDEMEYER K S, LOWE M J, et al. Brain: gadolinium-enhanced fast fluid-attenuated inversion-recovery MR imaging[J]. Radiology, 1999, 211(1): 257-263. DOI: 10.1148/radiology.211.1.r99mr25257.
[4]
IGHANI M, JONAS S, IZBUDAK I, et al. No association between cortical lesions and leptomeningeal enhancement on 7-Tesla MRI in multiple sclerosis[J]. Mult Scler, 2020, 26(2): 165-176. DOI: 10.1177/1352458519876037.
[5]
KADRY H, NOORANI B, CUCULLO L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity[J/OL]. Fluids Barriers CNS, 2020, 17(1): 69 [2024-01-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672931/. DOI: 10.1186/s12987-020-00230-3.
[6]
LING Y H, CHI N F, PAN L L H, et al. Association between impaired dynamic cerebral autoregulation and BBB disruption in reversible cerebral vasoconstriction syndrome[J/OL]. J Headache Pain, 2023, 24(1): 170 [2024-03-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729479/. DOI: 10.1186/s10194-023-01694-y.
[7]
PARK Y W, HAN K, PARK J E, et al. Leptomeningeal metastases in glioma revisited: incidence and molecular predictors based on postcontrast fluid-attenuated inversion recovery imaging[J]. J Neurosurg, 2023, 139(1): 38-48. DOI: 10.3171/2022.9.JNS221659.
[8]
VERHEGGEN I C M, FREEZE W M, DE JONG J J A, et al. Application of contrast-enhanced magnetic resonance imaging in the assessment of blood-cerebrospinal fluid barrier integrity[J]. Neurosci Biobehav Rev, 2021, 127: 171-183. DOI: 10.1016/j.neubiorev.2021.04.025.
[9]
OLATUNJI R, LIM T R, JONES B, et al. Delayed gadolinium leakage in ocular structures on brain MR imaging: prevalence and associated factors[J]. AJNR Am J Neuroradiol, 2023, 45(1): 90-95. DOI: 10.3174/ajnr.A8073.
[10]
WANG M M, SUN X, HU N, et al. The changes of blood-labyrinth barrier in idiopathic sudden sensorineural hearing loss and the relationship with clinical features and prognosis[J]. Chin J Otorhinolaryngol Head Neck Surg, 2022, 57(8): 937-942. DOI: 10.3760/cma.j.cn115330-20210705-00429.
[11]
ZHANG M Y, TANG J, XIA D, et al. Evaluation of glymphatic-meningeal lymphatic system with intravenous gadolinium-based contrast-enhancement in cerebral small-vessel disease[J]. Eur Radiol, 2023, 33(9): 6096-6106. DOI: 10.1007/s00330-023-09796-6.
[12]
AHN S J, TAOKA T, MOON W J, et al. Contrast-enhanced fluid-attenuated inversion recovery in neuroimaging: a narrative review on clinical applications and technical advances[J]. J Magn Reson Imaging, 2022, 56(2): 341-353. DOI: 10.1002/jmri.28117.
[13]
HUANG B, LIANG C H, LIU H J, et al. Intracranial metastases: value of MR contrast-enhanced fluid attenuated inversion recovery[J]. J Clin Radiol, 2008, 27(6): 766-769. DOI: 10.3969/j.issn.1001-9324.2008.06.014.
[14]
TANG G Y, LI M. Magnetic resonance imaging techniques and application[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2023: 67-68.
[15]
RUI W T, JIN T, ZHANG H, et al. Optimization of contrast agent dosage on contrast-enhanced T2 fluid-attenuated inversion recovery: an in vitro and in vivo study[J]. J Comput Assist Tomogr, 2021, 45(1): 121-127. DOI: 10.1097/RCT.0000000000001055.
[16]
JOHANNES H, RENÉ H, GREGOR J, et al. AI as a new frontier in contrast media research: bridging the gap between contrast media reduction, the contrast-free question and new application discoveries[J]. Investig Radiol, 2023: 59(2): 206-213. DOI: 10.1097/RLI.0000000000001028.
[17]
AKBAS E, UNAL F, YUZBASIOGLU D. Cellular toxicities of gadolinium-based contrast agents used in magnetic resonance imaging[J]. J Appl Toxicol, 2023, 43(7): 958-972. DOI: 10.1002/jat.4416.
[18]
WANG Y J, ZHENG X J, LI J Y. Analysis of neuroimaging signs-tumor[M]. Beijing: Scientific and Technical Documents Publishing House, 2022: 15-16, 52, 328-330.
[19]
JIN T, GE M, HUANG R, et al. Utility of contrast-enhanced T2 FLAIR for imaging brain metastases using a half-dose high-relaxivity contrast agent[J]. AJNR Am J Neuroradiol, 2021, 42(3): 457-463. DOI: 10.3174/ajnr.A6931.
[20]
JIN T, ZHANG H, LIU X M, et al. Enhancement degree of brain metastases: correlation analysis between enhanced T2 FLAIR and vascular permeability parameters of dynamic contrast-enhanced MRI[J]. Eur Radiol, 2021, 31(8): 5595-5604. DOI: 10.1007/s00330-020-07625-8.
[21]
CAO M H, SU Y, SU W F, et al. Comparative study of different doses of gadolinium contrast agent on contrast enhanced T2 FLAIR and T1WI in diagnosis of brain metastases[J]. Chin J Magn Reson Imag, 2024, 15(1): 152-157. DOI: 10.12015/issn.1674-8034.2024.01.024.
[22]
YU X Y, HE Y, YAO Z W, et al. Application value of half-dose gadolinium T2-FLAIR on the enhancement of meningiomas[J]. Chin Comput Med Imag, 2021, 27(3): 195-198. DOI: 10.19627/j.cnki.cn31-1700/th.2021.03.004.
[23]
WU S M, YAO Z W. Perspective application of contrast-enhanced FLAIR on central nervous system[J]. Chin Comput Med Imag, 2018, 24(6): 553-556. DOI: 10.19627/j.cnki.cn31-1700/th.2018.06.020.
[24]
KUMMARI S, BURRA K G, REDDY V R K, et al. Determination of efficiency of 3D fluid-attenuated inversion recovery (FLAIR) in the imaging of multiple sclerosis in comparison with 2D FLAIR at 3-tesla MRI[J/OL]. Cureus, 2023, 15(11): e48136 [2024-03-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693390/. DOI: 10.7759/cureus.48136.
[25]
ZHANG (L /Y)(L /Y), WANG X M. Comparative study on contrast-enhanced Cube FLAIR and T1WI sequences in craniocerebral diseases[J]. Chin J Magn Reson Imag, 2017, 8(10): 726-731. DOI: 10.12015/issn.1674-8034.2017.10.002.
[26]
OSAWA I, NAGAWA K, HARA Y, et al. Utility of contrast-enhanced 3D STIR FLAIR imaging for evaluating pituitary adenomas at 3 Tesla[J/OL]. Eur J Radiol Open, 2023, 11: 100500 [2024-01-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319169/. DOI: 10.1016/j.ejro.2023.100500.
[27]
DAR S U H, ÖZTÜRK Ş, ÖZBEY M, et al. Parallel-stream fusion of scan-specific and scan-general priors for learning deep MRI reconstruction in low-data regimes[J/OL]. Comput Biol Med, 2023, 167: 107610 [2024-03-02]. https://www.sciencedirect.com/science/article/abs/pii/S0010482523010752. DOI: 10.1016/j.compbiomed.2023.107610.
[28]
WANG Y L, WU W Y, YANG Y X, et al. Deep learning-based 3D MRI contrast-enhanced synthesis from a 2D noncontrast T2Flair sequence[J]. Med Phys, 2022, 49(7): 4478-4493. DOI: 10.1002/mp.15636.
[29]
FREEZE W M, WEELE D N TER, PALM W M, et al. Optimal detection of subtle gadolinium leakage in CSF with heavily T2-weighted fluid-attenuated inversion recovery imaging[J]. AJNR Am J Neuroradiol, 2019, 40(9): 1481-1483. DOI: 10.3174/ajnr.A6145.
[30]
OKAR S V, FAGIANI F, ABSINTA M, et al. Imaging of brain barrier inflammation and brain fluid drainage in human neurological diseases[J/OL]. Cell Mol Life Sci, 2024, 81(1): 31 [2024-03-02]. https://link.springer.com/article/10.1007/s00018-023-05073-3. DOI: 10.1007/s00018-023-05073-3.
[31]
QIAN Y F, ZHANG C, YU C L, et al. Analysis of normally enhancing intracranial structure on contrast-enhanced fluid-attenuated inversion-recovery MR imaging[J]. Chin J Med Imag Technol, 2007, 23(9): 1274-1277. DOI: 10.3321/j.issn:1003-3289.2007.09.004.
[32]
PATEL L D, RAGHAVAN P, TANG S Y, et al. Imaging of the meningeal lymphatic network in healthy adults: a 7T MRI study[J]. J Neuroradiol, 2023, 50(4): 369-376. DOI: 10.1016/j.neurad.2023.03.002.
[33]
CHU S G, YANG C W, LIANG X H, et al. Emphasis on standardized imaging examination of brain metastases to improve the accuracy of imaging evaluation[J]. Chin J Metastatic Cancer, 2021, 4(1): 10-14. DOI: 10.3760/cma.j.cn101548-20201111-00170.
[34]
CAO Z B, YANG Y Y, HUANG B S. Diagnostic value of 3.0T MR enhanced T2-FLAIR sequence in brain metastases[J]. J Imag Res Med Appl, 2021, 5(17): 90-91. DOI: 10.3969/j.issn.2096-3807.2021.17.043.
[35]
GONG J Z, QIAO J L, XI Y. Comparative study on contrast-enhanced T2 FLAIR and contrast-enhanced T1WI in displaying brain tumors[J]. Chin Comput Med Imag, 2019, 25(6): 503-508. DOI: 10.19627/j.cnki.cn31-1700/th.2019.06.001.
[36]
GONG J Z, JIAO J, XI Y, et al. Application of subtraction contrast-enhanced T2 FLAIR imaging on brain tumors[J]. Chin Comput Med Imag, 2021, 27(6): 473-477. DOI: 10.19627/j.cnki.cn31-1700/th.2021.06.001.
[37]
LIU J K, LIAO X Y, TANG P T, et al. The value of contrast-enhanced FLAIR sequence combined with subtraction techniquein the differential diagnosis between high-grade glioma and solitary metastasis[J]. J Pract Med Imag, 2019, 20(4): 325-328. DOI: 10.16106/j.cnki.cn14-1281/r.2019.04.001.
[38]
WANG M, YANG Y. The value of measuring ADC values in the peritumoral area using enhanced T2 FLAIR as A reference in the differential diagnosis of brain metastases and high-grade hliomas[J]. Chin J CT MRI, 2023, 21(9): 16-18. DOI: 10.3969/j.issn.1672-5131.2023.09.006.
[39]
National Health Commission Medical Administration Bureau, Glioma Professional Committee of Chinese Anti-cancer Association, Glioma Professional Committee of Chinese Medical Doctor Association. Guidelines for diagnosis and treatment of glioma (2022 edition)[J]. Chin J Neurosurg, 2022, 38(8): 757-777. DOI: 10.3760/cma.j.cn112050-20220510-00239.
[40]
YANG J Y. The value of contrast-enhanced T2 FLAIR in the differential diagnosis of central nervous system lymphoma and high-grade adult diffuse glioma[D].Kunming: Kunming Medical University, 2022.
[41]
BAO H. The study of predicting IDH genotype in diffuse glioma based on enhancement features and radiomics of CE-T1WI and CE-T2-FLAIR[D]. Kunming: Kunming Medical University, 2022. DOI: 10.27202/d.cnki.gkmyc.2022.000955.
[42]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[43]
LIU S H, LI J L, ZHOU Q. Radiomics of contrast enhancement-fluid attenuation inversion recovery sequence MRI for evaluation on 1p/19q status of adult diffuse low grade glioma[J]. Chin J Med Imag Technol, 2022, 38(10): 1470-1475. DOI: 10.13929/j.issn.1003-3289.2022.10.006.
[44]
LI H X, PIAO S R, HU B, et al. Brain MRI features of diffuse midline gliomas with H3K27M alteration in teenagers and adult patients[J]. Chin J Clin Neurosci, 2023, 31(6): 633-640, 655.
[45]
PARK Y W, HAN K, KIM S, et al. Revisiting prognostic factors in glioma with leptomeningeal metastases: a comprehensive analysis of clinical and molecular factors and treatment modalities[J]. J Neurooncol, 2023, 162(1): 59-68. DOI: 10.1007/s11060-022-04233-y.
[46]
DE GODOY L L, CHAWLA S, BREM S, et al. Taming glioblastoma in "real time": integrating multimodal advanced neuroimaging/AI tools towards creating a robust and therapy agnostic model for response assessment in neuro-oncology[J]. Clin Cancer Res, 2023, 29(14): 2588-2592. DOI: 10.1158/1078-0432.CCR-23-0009.
[47]
JIANG J, ZHOU J L. Advances in clinical and radiomics of distinguishing pseudoprogression and true progression in brain gliomas[J]. Chin J Magn Reson Imag, 2023, 14(4): 142-146, 153. DOI: 10.12015/issn.1674-8034.2023.04.025.
[48]
GAO X Y, WANG Y D, WU S M, et al. Differentiation of treatment-related effects from glioma recurrence using machine learning classifiers based upon pre-and post-contrast T1WI and T2 FLAIR subtraction features: a two-center study[J]. Cancer Manag Res, 2020, 12: 3191-3201. DOI: 10.2147/CMAR.S244262.
[49]
LOHMANN P, FRANCESCHI E, VOLLMUTH P, et al. Radiomics in neuro-oncological clinical trials[J/OL]. Lancet Digit Health, 2022, 4(11): e841-e849 [2024-01-18]. https://www.ejradiology.com/article/S0720-048X(22)00340-0/abstract. DOI: 10.1016/S2589-7500(22)00144-3.
[50]
LIU Z Y, SHI Z W. Artificial intelligence in medical imaging: progress and perspectives[J]. Int J Med Radiol, 2023, 46(1): 1-4. DOI: 10.19300/j.2023.s20494.
[51]
PANYAPING T, PUNPICHET M, TUNLAYADECHANONT P, et al. Usefulness of a rim-enhancing pattern on the contrast-enhanced 3D-FLAIR sequence and MRI characteristics for distinguishing meningioma and malignant dural-based tumor[J]. AJNR Am J Neuroradiol, 2023, 44(3): 247-253. DOI: 10.3174/ajnr.A7780.
[52]
MA J Q. The value of CE-T2-FLAIR in the diagnosis and differential diagnosis of meningioma[D].Kunming: Kunming Medical University, 2023. DOI: 10.27202/d.cnki.gkmyc.2023.000155.
[53]
WU S M, FANG Z W, ZHANG H, et al. Rim enhancement of meningiomas in contrast-enhanced T2 fluidattenuated inversion recovery magnetic resonance imaging: based on pathological findings[J]. Chin J Magn Reson Imag, 2019, 10(2): 115-120. DOI: 10.12015/issn.1674-8034.2019.02.008.
[54]
BENSON J C, CARLSON M L, LANE J I. Peritumoral signal on postcontrast FLAIR images: description and proposed biomechanism in vestibular schwannomas[J]. AJNR Am J Neuroradiol, 2023, 44(10): 1171-1175. DOI: 10.3174/ajnr.A7979.
[55]
BARAJAS R F, POLITI L S, ANZALONE N, et al. Consensus recommendations for MRI and PET imaging of primary central nervous system lymphoma: guideline statement from the International Primary CNS Lymphoma Collaborative Group (IPCG)[J]. Neuro-oncology, 2021, 23(7): 1056-1071. DOI: 10.1093/neuonc/noab020.
[56]
LEE Y C, SUH S, RYOO I, et al. Imaging finding and analysis of brain lymphoma in contrast-enhanced fluid attenuated inversion recovery sequence[J/OL]. Eur J Radiol, 2022, 155: 110490 [2024-01-18]. https://www.ejradiology.com/article/S0720-048X(22)00340-0/abstract. DOI: 10.1016/j.ejrad.2022.110490.
[57]
GUO R, WU Y, GUO G C, et al. Application of contrast-enhanced 3-dimensional T2-weighted volume isotropic turbo spin echo acquisition sequence in the diagnosis of prolactin-secreting pituitary microadenomas[J]. J Comput Assist Tomogr, 2022, 46(1): 116-123. DOI: 10.1097/RCT.0000000000001237.
[58]
FLESERIU M, VARLAMOV E V, HINOJOSA-AMAYA J M, et al. An individualized approach to the management of Cushing disease[J]. Nat Rev Endocrinol, 2023, 19(10): 581-599. DOI: 10.1038/s41574-023-00868-7.
[59]
AZUMA M, KHANT Z A, KADOTA Y, et al. Added value of contrast-enhanced 3D-FLAIR MR imaging for differentiating cystic pituitary adenoma from rathke's cleft cyst[J]. Magn Reson Med Sci, 2021, 20(4): 404-409. DOI: 10.2463/mrms.mp.2020-0127.

PREV The application of diffusion magnetic resonance imaging-based brain tissue microstructure imaging in the diagnosis and treatment of brain tumors
NEXT Hemodynamic Imaging Techniques and New Advances in Carotid Artery Plaques
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn