Share:
Share this content in WeChat
X
Review
Hemodynamic Imaging Techniques and New Advances in Carotid Artery Plaques
LI Lu  XU Haiyang  SUN Yumeng  LI Tingting  YU Wei 

Cite this article as: LI L, XU H Y, SUN Y M, et al. Hemodynamic Imaging Techniques and New Advances in Carotid Artery Plaques[J]. Chin J Magn Reson Imaging, 2024, 15(4): 214-218. DOI:10.12015/issn.1674-8034.2024.04.035.


[Abstract] Carotid atherosclerotic stenosis is one of the main diseases causing ischemic stroke (IS), and early detection of stenosis and identification of vulnerable plaques can significantly improve the efficacy and reduce the mortality and disability rates. Hemodynamic changes are closely related to the formation, development, and rupture of plaques. The use of hemodynamic parameters to assess the risk of atherosclerotic plaque rupture and guide the selection of clinical treatment methods has become the focus of research on the precise diagnosis and treatment of atherosclerosis. However, the mechanism of the interaction between hemodynamic parameters and plaques has not been fully elucidated, and hemodynamic imaging techniques have not been widely developed. This article reviews the previous literature to further sort out the imaging progress of carotid plaque hemodynamics, as well as the interaction mechanism between hemodynamic changes and plaque formation, development and rupture, and discuss the relationship between these features and IS, aiming to evaluate the predictive value of plaque composition and hemodynamics in stroke events caused by carotid atherosclerotic stenosis.
[Keywords] carotid atherosclerosis;hemodynamics;computational fluid dynamics;four-dimensional flow magnetic resonance imaging;magnetic resonance imaging

LI Lu   XU Haiyang   SUN Yumeng   LI Tingting   YU Wei*  

Department of Medical Imaging, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China

Corresponding author: YU W, E-mail: nxyw1969@163.com

Conflicts of interest   None.

Received  2024-01-08
Accepted  2024-03-22
DOI: 10.12015/issn.1674-8034.2024.04.035
Cite this article as: LI L, XU H Y, SUN Y M, et al. Hemodynamic Imaging Techniques and New Advances in Carotid Artery Plaques[J]. Chin J Magn Reson Imaging, 2024, 15(4): 214-218. DOI:10.12015/issn.1674-8034.2024.04.035.

[1]
SUN T, CHEN S Y, WU K, et al. Trends in incidence and mortality of stroke in China from 1990 to 2019[J/OL]. Front Neurol, 2021, 12: 759221 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645546. DOI: 10.3389/fneur.2021.759221.
[2]
MA Y, CAO J H, MUBARIK S, et al. Age-period-cohort analysis of long trend of mortality for stroke and subtypes attributed to high SBP in Chinese adults[J/OL]. Front Neurol, 2022, 13: 710744 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959307. DOI: 10.3389/fneur.2022.710744.
[3]
STRECKER C, KRAFFT A J, KAUFHOLD L, et al. Carotid geometry is an independent predictor of wall thickness - a 3D cardiovascular magnetic resonance study in patients with high cardiovascular risk[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 67 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488078. DOI: 10.1186/s12968-020-00657-5.
[4]
SAITO K, ABE S, KUMAMOTO M, et al. Blood flow visualization and wall shear stress measurement of carotid arteries using vascular vector flow mapping[J]. Ultrasound Med Biol, 2020, 46(10): 2692-2699. DOI: 10.1016/j.ultrasmedbio.2020.06.018.
[5]
ZIEGLER M, ALFRAEUS J, GOOD E, et al. Exploring the relationships between hemodynamic stresses in the carotid arteries[J/OL]. Front Cardiovasc Med, 2020, 7: 617755 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886794/. DOI: 10.3389/fcvm.2020.617755.
[6]
XIANG Y Q, MENDIETA J B, WANG J Q, et al. Differences in carotid artery geometry and flow caused by body postural changes and physical exercise[J]. Ultrasound Med Biol, 2023, 49(3): 820-830. DOI: 10.1016/j.ultrasmedbio.2022.11.009.
[7]
ZALUD N C, BULUSU K V, PLESNIAK M W. Shear stress metrics associated with pro-atherogenic high-risk anatomical features in a carotid artery bifurcation model[J/OL]. Clin Biomech, 2023, 105: 105956 [2023-11-25]. https://doi.org/10.1016/j.clinbiomech.2023.105956. DOI: 10.1016/j.clinbiomech.2023.105956.
[8]
MÜFTÜOĞULLARı A, SÜNER M, SARPER B. The effect of bifurcation angulation on flow characteristics and hemodynamic indicators in an idealized left coronary artery[J/OL]. Int J Thermofluids, 2024, 21: 100554 [2024-03-09]. https://doi.org/10.1016/J.IJFT.2023.100554. DOI: 10.1016/j.ijft.2023.100554.
[9]
HE L, CAI Y D, FENG Y H, et al. Utility of vector flow mapping technology in quantitative assessment of carotid wall shear stress in hypertensive patients: a preliminary study[J/OL]. Front Cardiovasc Med, 2022, 9: 967763 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649775. DOI: 10.3389/fcvm.2022.967763.
[10]
MORBIDUCCI U, MAZZI V, DOMANIN M, et al. Wall shear stress topological skeleton independently predicts long-term restenosis after carotid bifurcation endarterectomy[J]. Ann Biomed Eng, 2020, 48(12): 2936-2949. DOI: 10.1007/s10439-020-02607-9.
[11]
J M, L N, A V, et al. Wall shear stress alteration: a local risk factor of atherosclerosis[J]. Curr Atheroscler Rep, 2022, 24(3): 143-151. DOI: 10.1007/s11883-022-00993-0.
[12]
LIU X H, SONG P, GAO Q, et al. Impact on hemodynamics in carotid arteries with carotid webs at different locations: a Numerical Study Integrating Thrombus Growth Model[J/OL]. Comput Methods Programs Biomed, 2024, 243: 107926 [2024-03-09].https://doi.org/10.1016/J.CMPB.2023.107926. DOI: 10.1016/j.cmpb.2023.107926.
[13]
XIANG Y Q, HUANG X J, BENITEZ MENDIETA J, et al. The need to shift from morphological to structural assessment for carotid plaque vulnerability[J/OL]. Biomedicines, 2022, 10(12): 3038 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776071. DOI: 10.3390/biomedicines10123038.
[14]
BROWN A J, TENG Z Z, CALVERT P A, et al. Plaque structural stress estimations improve prediction of future major adverse cardiovascular events after intracoronary imaging[J/OL]. Circ Cardiovasc Imaging, 2016, 9(6): e004172 [2023-11-25]. https://doi.org/10.1161/circimaging.115.004172. DOI: 10.1161/CIRCIMAGING.115.004172.
[15]
KARAKASIS P, PATOULIAS D, PAMPORIS K, et al. Risk of subclinical atherosclerosis in primary Sjogren's syndrome: a systematic review and meta-analysis[J/OL]. Eur J Intern Med, 2023 [2023-11-25]. https://doi.org/10.1016/J.EJIM.2023.11.007. DOI: 10.1016/j.ejim.2023.11.007.
[16]
HAN N, MA Y R, LI Y, et al. Imaging and hemodynamic characteristics of vulnerable carotid plaques and artificial intelligence applications in plaque classification and segmentation[J/OL]. Brain Sci, 2023, 13(1): 143 [2024-03-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9856903/. DOI: 10.3390/brainsci13010143.
[17]
MENDIETA J B, FONTANAROSA D, WANG J Q, et al. MRI-based mechanical analysis of carotid atherosclerotic plaque using a material-property-mapping approach: a material-property-mapping method for plaque stress analysis[J/OL]. Comput Methods Programs Biomed, 2023, 231: 107417 [2023-11-25]. https://doi.org/10.1016/J.CMPB.2023.107417. DOI: 10.1016/j.cmpb.2023.107417.
[18]
ZHANG G L, WANG Z X, ZHANG S, et al. Age and anatomical location related hemodynamic changes assessed by 4D flow MRI in the carotid arteries of healthy adults[J/OL]. Eur J Radiol, 2020, 128: 109035 [2023-11-25]. https://doi.org/10.1016/j.ejrad.2020.109035. DOI: 10.1016/j.ejrad.2020.109035.
[19]
SIA S F, ZHAO X H, LI R, et al. Evaluation of the carotid artery stenosis based on minimization of mechanical energy loss of the blood flow[J]. Proc Inst Mech Eng H, 2016, 230(11): 1051-1058. DOI: 10.1177/0954411916671752.
[20]
KAMEL H, NAVI B B, MERKLER A E, et al. Reclassification of ischemic stroke etiological subtypes on the basis of high-risk nonstenosing carotid plaque[J]. Stroke, 2020, 51(2): 504-510. DOI: 10.1161/STROKEAHA.119.027970.
[21]
SMITHA B, YADAV D, JOSEPH P K. Evaluation of carotid intima media thickness measurement from ultrasound images[J]. Med Biol Eng Comput, 2022, 60(2): 407-419. DOI: 10.1007/s11517-021-02496-7.
[22]
JOHRI A M, NAMBI V, NAQVI T Z, et al. Recommendations for the assessment of carotid arterial plaque by ultrasound for the characterization of atherosclerosis and evaluation of cardiovascular risk: from the American society of echocardiography[J]. J Am Soc Echocardiogr, 2020, 33(8): 917-933. DOI: 10.1016/j.echo.2020.04.021.
[23]
KIZHISSERI M, GHARAIE S, SCHLUTER J. An analytical method informed by clinical imaging data for estimating outlet boundary conditions in computational fluid dynamics analysis of carotid artery blood flow[J/OL]. Sci Rep, 2023, 13(1): 14973 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495450/. DOI: 10.1038/s41598-023-42004-5.
[24]
TOBA T, OTAKE H, CHOI G, et al. Wall shear stress and plaque vulnerability: computational fluid dynamics analysis derived from cCTA and OCT[J]. JACC Cardiovasc Imaging, 2021, 14(1): 315-317. DOI: 10.1016/j.jcmg.2020.07.034.
[25]
BANTWAL A, SINGH A, MENON A R, et al. Hemodynamic study of blood flow in the carotid artery with a focus on carotid sinus using fluid-structure interaction[J/OL]. J Fluids Eng, 2022, 144(2): 021403 [2023-11-25].https://doi.org/10.1115/1.4051902. DOI: 10.1115/1.4051902.
[26]
LEE U Y, KWAK H S. Evaluation of plaque vulnerability via combination of hemodynamic analysis and simultaneous non-contrast angiography and intraplaque hemorrhage (SNAP) sequence for carotid intraplaque hemorrhage[J/OL]. J Pers Med, 2021, 11(9): 856 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465016. DOI: 10.3390/jpm11090856.
[27]
MOERMAN A M, KORTELAND S, DILBA K, et al. The correlation between wall shear stress and plaque composition in advanced human carotid atherosclerosis[J/OL]. Front Bioeng Biotechnol, 2021, 9: 828577 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831262. DOI: 10.3389/fbioe.2021.828577.
[28]
HAMEED M S, AHMAD SHAH A, KHAN M I, et al. Comparison of blood flow analysis in stenosed and stented carotid artery bifurcation models[J/OL]. Cogent Eng, 2023, 10(1) [2023-11-25]. https://doi.org/10.1080/23311916.2022.2158624. DOI: 10.1080/23311916.2022.2158624.
[29]
XU Q L, ZHANG J K, LIU Y, et al. The principles and applications of phase-contrast magnetic resonance imaging[J]. J Biomed Eng Res, 2017, 36(4): 387-391. DOI: 10.19529/j.cnki.1672-6278.2017.04.23.
[30]
VAN TUIJL R J, RUIGROK Y M, VELTHUIS B K, et al. Velocity pulsatility and arterial distensibility along the internal carotid artery[J/OL]. J Am Heart Assoc, 2020, 9(16): e016883 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660833. DOI: 10.1161/JAHA.120.016883.
[31]
PRADELLA M, SCOTT M B, OMER M, et al. Fully-automated deep learning-based flow quantification of 2D CINE phase contrast MRI[J]. Eur Radiol, 2023, 33(3): 1707-1718. DOI: 10.1007/s00330-022-09179-3.
[32]
ZARRINKOOB L, MYRNÄS S, WÅHLIN A, et al. Cerebral blood flow patterns in patients with low-flow carotid artery stenosis, a 4D-PCMRI assessment[J/OL]. J Magn Reson Imaging, 2024 [2024-03-09]. https://doi.org/10.1002/jmri.29216. DOI: 10.1002/jmri.29216.
[33]
NALLAMOTHU T, PRADELLA M, MARKL M, et al. Robust and fast stochastic 4D flow vector-field signature technique for quantifying composite flow dynamics from 4D flow MRI: application to left atrial flow in atrial fibrillation[J/OL]. Med Image Anal, 2024, 92: 103065 [2024-03-09]. https://doi.org/10.1016/j.media.2023.103065. DOI: 10.1016/j.media.2023.103065.
[34]
SAYED R E, SHARIFI A, PARK C C, et al. Optimization of 4D flow MRI spatial and temporal resolution for examining complex hemodynamics in the carotid artery bifurcation[J]. Cardiovasc Eng Technol, 2023, 14(3): 476-488. DOI: 10.1007/s13239-023-00667-1.
[35]
STRECKER C, KRAFFT A J, KAUFHOLD L, et al. Carotid geometry and wall shear stress independently predict increased wall thickness-a longitudinal 3D MRI study in high-risk patients[J/OL]. Front Cardiovasc Med, 2021, 8: 723860 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576112. DOI: 10.3389/fcvm.2021.723860.
[36]
ELHFNAWY A, ABDEL GALEEL A, ABDELKHALEK H. Carotid atherosclerosis in a sample of Egyptian patients with or without ischemic vascular events[J/OL]. Egypt J Neurol Psychiatry Neurosurg, 2023, 59(1): 144 [2023-11-25]. https://doi.org/10.1186/S41983-023-00740-5. DOI: 10.1186/s41983-023-00740-5.
[37]
HOLMGREN M, HENZE A, WÅHLIN A, et al. Diagnostic separation of conventional ≥50% carotid stenosis and near-occlusion with phase-contrast MRI[J]. Eur Stroke J, 2024, 9(1): 135-143. DOI: 10.1177/23969873231215634.
[38]
ZARRINKOOB L, WÅHLIN A, AMBARKI K, et al. Quantification and mapping of cerebral hemodynamics before and after carotid endarterectomy, using four-dimensional flow magnetic resonance imaging[J/OL]. J Vasc Surg, 2021, 74(3): 910-920.e1 [2023-11-25]. https://doi.org/10.1016/j.jvs.2021.01.074IF. DOI: 10.1016/j.jvs.2021.01.074.
[39]
LIU M Y, LI S, YIN M, et al. Pinacidil ameliorates cardiac microvascular ischemia-reperfusion injury by inhibiting chaperone-mediated autophagy of calreticulin[J]. Basic Res Cardiol, 2024, 119(1): 113-131. DOI: 10.1007/s00395-023-01028-8.
[40]
CHENG L, YUE H Y, ZHANG H Y, et al. The influence of microenvironment stiffness on endothelial cell fate: implication for occurrence and progression of atherosclerosis[J/OL]. Life Sci, 2023, 334: 122233 [2023-11-25]. https://doi.org/10.1016/j.lfs.2023.122233. DOI: 10.1016/j.lfs.2023.122233.
[41]
NIKIFOROV N G, KIRICHENKO T V, KUBEKINA M V, et al. Macrophages derived from LPS-stimulated monocytes from individuals with subclinical atherosclerosis were characterized by increased pro-inflammatory activity[J/OL]. Cytokine, 2023, 172: 156411 [2023-11-25].https://doi.org/10.1016/j.cyto.2023.156411. DOI: 10.1016/j.cyto.2023.156411.
[42]
LIN C, MCCARTHY C P, MOHEBI R, et al. Sex differences in coronary artery disease characteristics among patients with type 2 myocardial infarction[J/OL]. JACC Adv, 2024, 3(2): 100795 [2024-03-09].https://doi.org/10.1016/j.jacadv.2023.100795. DOI: 10.1016/j.jacadv.2023.100795.
[43]
SAVASTANO L, MOUSAVI H, LIU Y, et al. Unifying theory of carotid plaque disruption based on structural phenotypes and forces expressed at the lumen/wall interface[J]. Stroke Vasc Neurol, 2022, 7(6): 465-475. DOI: 10.1136/svn-2021-001451.
[44]
WANG Y, QIU J H, LUO S S, et al. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis[J]. Regen Biomater, 2016, 3(4): 257-267. DOI: 10.1093/rb/rbw021.
[45]
ZHOU H, MENG L, ZHOU W, et al. Computational and experimental assessment of influences of hemodynamic shear stress on carotid plaque[J/OL]. Biomed Eng Online, 2017, 16(1): 92 [2023-11-25]. https://doi.org/10.1186/s12938-017-0386-z. DOI: 10.1186/s12938-017-0386-z.
[46]
DAI Y Y, QIAN Y, ZHANG M Z, et al. Associations between local haemodynamics and carotid intraplaque haemorrhage with different stenosis severities: a preliminary study based on MRI and CFD[J]. J Clin Neurosci, 2019, 66: 220-225. DOI: 10.1016/j.jocn.2019.05.041.
[47]
ZHANG G L, ZHANG S, QIN Y Y, et al. Differences in wall shear stress between high-risk and low-risk plaques in patients with moderate carotid artery stenosis: a 4D flow MRI study[J/OL]. Front Neurosci, 2021, 15: 678358 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8385133. DOI: 10.3389/fnins.2021.678358.
[48]
TUENTER A, SELWANESS M, ARIAS LORZA A, et al. High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques[J]. Atherosclerosis, 2016, 251: 348-354. DOI: 10.1016/j.atherosclerosis.2016.05.018.
[49]
CHEN W Y, XIAO H, GUO L J. Current research status on pathological characteristics and mechanisms of vulnerable plaque[J]. Chin J Cardiovasc Med, 2021, 26(1): 74-77. DOI: 10.3969/j.issn.1007-5410.2021.01.019.
[50]
ZHANG Y W, LUO Q, LU K N, et al. Subclinical atherosclerosis in primary Sjögren's syndrome: comparable risk with diabetes mellitus[J]. Clin Rheumatol, 2023, 42(6): 1607-1614. DOI: 10.1007/s10067-023-06538-3.

PREV Research progress of contrast-enhanced T2 FLAIR in intracranial neoplasms imaging diagnosis
NEXT Value of imaging techniques in early detection and assessment of cardiac dysfunction in breast cancer patients post-chemotherapy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn