Share:
Share this content in WeChat
X
Review
Value of imaging techniques in early detection and assessment of cardiac dysfunction in breast cancer patients post-chemotherapy
QI Xuan  WANG Wuling  YANG Hongkai  LIU Guangzhu  QI Dong  HE Yongsheng 

Cite this article as: QI X, WANG W L, YANG H K, et al. Value of imaging techniques in early detection and assessment of cardiac dysfunction in breast cancer patients post-chemotherapy[J]. Chin J Magn Reson Imaging, 2024, 15(4): 219-224. DOI:10.12015/issn.1674-8034.2024.04.036.


[Abstract] Breast cancer has become the most prevalent cancer worldwide. With the advancement in diagnostic and therapeutic methods, the survival time of breast cancer patients has been significantly extended. However, anti-tumor treatments can lead to cardiac-related complications, resulting in cancer therapy-related cardiac dysfunction (CTRCD). CTRCD begins with subclinical myocardial cell damage and eventually develops into symptomatic heart failure. Therefore, accurately assessing the occurrence and severity of CTRCD is crucial for the treatment and recovery of cancer patients. With the continuous advancement of medical technology, cardiac imaging has become a key tool in the assessment and management of heart health. This includes echocardiography, cardiac computed tomography (CCT), and cardiac magnetic resonance imaging (CMRI). Beyond providing information on heart structure and function, techniques such as tissue-specific imaging, strain imaging, and perfusion imaging play a crucial role in the early identification and assessment of CTRCD. This article reviewed the progress of different imaging examination techniques in the study of cardiac dysfunction after chemotherapy in breast cancer patients, with a focus on the progress of MRI technology in this area, in the hope of providing more accurate imaging biological information for the early detection of CTRCD.
[Keywords] breast cancer;chemotherapy;cardiac function;cardiac magnetic resonance imaging;echocardiography;cardiac computed tomography

QI Xuan1   WANG Wuling1   YANG Hongkai1   LIU Guangzhu1, 2   QI Dong1, 2   HE Yongsheng1*  

1 Department of Radiology, Ma'anshan People's Hospital, Ma'anshan 243000, China

2 Ma'anshan Clinical College, Anhui Medical University, Ma'anshan 243000, China

Corresponding author: HE Y S, E-mail: heyongsheng881@163.com

Conflicts of interest   None.

Received  2023-09-08
Accepted  2024-03-29
DOI: 10.12015/issn.1674-8034.2024.04.036
Cite this article as: QI X, WANG W L, YANG H K, et al. Value of imaging techniques in early detection and assessment of cardiac dysfunction in breast cancer patients post-chemotherapy[J]. Chin J Magn Reson Imaging, 2024, 15(4): 219-224. DOI:10.12015/issn.1674-8034.2024.04.036.

[1]
CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J, 2021, 134(7): 783-791. DOI: 10.1097/CM9.0000000000001474.
[2]
ZHANG M, CUI Y C, WANG C P, et al. Trend of disease burden and risk factors of breast cancer in Chinese women from 1990 to 2019[J]. Chin J Cancer Prev Treat, 2022, 29(7): 456-462. DOI: 10.16073/j.cnki.cjcpt.2022.07.02.
[3]
GERNAAT S A M, HO P J, RIJNBERG N, et al. Risk of death from cardiovascular disease following breast cancer: a systematic review[J]. Breast Cancer Res Treat, 2017, 164(3): 537-555. DOI: 10.1007/s10549-017-4282-9.
[4]
CURIGLIANO G, LENIHAN D, FRADLEY M, et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations[J]. Ann Oncol, 2020, 31(2): 171-190. DOI: 10.1016/j.annonc.2019.10.023.
[5]
HONG Y J, KIM G M, HAN K, et al. Cardiotoxicity evaluation using magnetic resonance imaging in breast Cancer patients (CareBest): study protocol for a prospective trial[J/OL]. BMC Cardiovasc Disord, 2020, 20(1): 264 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/32493217/. DOI: 10.1186/s12872-020-01497-y.
[6]
ZHANG K W, FINKELMAN B S, GULATI G, et al. Abnormalities in 3-dimensional left ventricular mechanics with anthracycline chemotherapy are associated with systolic and diastolic dysfunction[J]. JACC Cardiovasc Imaging, 2018, 11(8): 1059-1068. DOI: 10.1016/j.jcmg.2018.01.015.
[7]
GUERRA F, MARCHESINI M, CONTADINI D, et al. Speckle-tracking global longitudinal strain as an early predictor of cardiotoxicity in breast carcinoma[J]. Support Care Cancer, 2016, 24(7): 3139-3145. DOI: 10.1007/s00520-016-3137-y.
[8]
MONTEMURRO F, NUZZOLESE I, PONZONE R. Neoadjuvant or adjuvant chemotherapy in early breast cancer?[J]. Expert Opin Pharmacother, 2020, 21(9): 1071-1082. DOI: 10.1080/14656566.2020.1746273.
[9]
MØLLER T, ANDERSEN C, LILLELUND C, et al. Physical deterioration and adaptive recovery in physically inactive breast cancer patients during adjuvant chemotherapy: a randomised controlled trial[J/OL]. Sci Rep, 2020, 10(1): 9710 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/32546796/. DOI: 10.1038/s41598-020-66513-9.
[10]
VARGHESE S S, EEKHOUDT C R, JASSAL D S. Mechanisms of anthracycline-mediated cardiotoxicity and preventative strategies in women with breast cancer[J]. Mol Cell Biochem, 2021, 476(8): 3099-3109. DOI: 10.1007/s11010-021-04152-y.
[11]
TADOKORO T, IKEDA M, IDE T, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity[J/OL]. JCI Insight, 2020, 5(9): e132747 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/32376803/. DOI: 10.1172/jci.insight.132747.
[12]
MAURO C, CAPONE V, COCCHIA R, et al. Exploring the cardiotoxicity spectrum of anti-cancer treatments: definition, classification, and diagnostic pathways[J/OL]. J Clin Med, 2023, 12(4): 1612 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/36836147/. DOI: 10.3390/jcm12041612.
[13]
LYON A R, LÓPEZ-FERNÁNDEZ T, COUCH L S, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS)[J]. Eur Heart J, 2022, 43(41): 4229-4361. DOI: 10.1093/eurheartj/ehac244.
[14]
LI S X, ZHENG M W. Radiographic assessment of cancer therapeutics-related cardiac dysfunction at different times[J]. J Air Force Med Univ, 2023, 44(8): 775-778, 785. DOI: 10.13276/j.issn.2097-1656.2023.08.019.
[15]
OIKONOMOU E K, KOKKINIDIS D G, KAMPAKTSIS P N, et al. Assessment of prognostic value of left ventricular global longitudinal strain for early prediction of chemotherapy-induced cardiotoxicity: a systematic review and meta-analysis[J]. JAMA Cardiol, 2019, 4(10): 1007-1018. DOI: 10.1001/jamacardio.2019.2952.
[16]
LIU J E, BARAC A, THAVENDIRANATHAN P, et al. Strain imaging in cardio-oncology[J]. JACC CardioOncol, 2020, 2(5): 677-689. DOI: 10.1016/j.jaccao.2020.10.011.
[17]
YANG A Q, ZHANG Y, XU M J, et al. Use of echocardiography to monitor myocardial damage during anthracycline chemotherapy[J]. Echocardiography, 2019, 36(3): 495-502. DOI: 10.1111/echo.14252.
[18]
BERGOM C, BRADLEY J A, NG A K, et al. Past, present, and future of radiation-induced cardiotoxicity: refinements in targeting, surveillance, and risk stratification[J]. JACC CardioOncol, 2021, 3(3): 343-359. DOI: 10.1016/j.jaccao.2021.06.007.
[19]
GAL R, VAN VELZEN S G M, HOONING M J, et al. Identification of risk of cardiovascular disease by automatic quantification of coronary artery calcifications on radiotherapy planning CT scans in patients with breast cancer[J]. JAMA Oncol, 2021, 7(7): 1024-1032. DOI: 10.1001/jamaoncol.2021.1144.
[20]
VUONG J T, STEIN-MERLOB A F, NAYERI A, et al. Immune checkpoint therapies and atherosclerosis: mechanisms and ClinicalImplications[J]. J Am Coll Cardiol, 2022, 79(6): 577-593. DOI: 10.1016/j.jacc.2021.11.048.
[21]
MITCHELL J D, CEHIC D A, MORGIA M, et al. Cardiovascular manifestations from therapeutic radiation: a multidisciplinary expert consensus statement from the international cardio-oncology society[J]. JACC CardioOncol, 2021, 3(3): 360-380. DOI: 10.1016/j.jaccao.2021.06.003.
[22]
AZOUR L, KADOCH M A, WARD T J, et al. Estimation of cardiovascular risk on routine chest CT: Ordinal coronary artery calcium scoring as an accurate predictor of Agatston score ranges[J]. J Cardiovasc Comput Tomogr, 2017, 11(1): 8-15. DOI: 10.1016/j.jcct.2016.10.001.
[23]
SHARMA A, EINSTEIN A J, VALLAKATI A, et al. Meta-analysis of global left ventricular function comparing multidetector computed tomography with cardiac magnetic resonance imaging[J]. Am J Cardiol, 2014, 113(4): 731-738. DOI: 10.1016/j.amjcard.2013.11.016.
[24]
WILLIAMS M C, STEWART C, WEIR N W, et al. Using radiation safely in cardiology: what imagers need to know[J]. Heart, 2019, 105(10): 798-806. DOI: 10.1136/heartjnl-2017-312493.
[25]
EGASHIRA K, SUETA D, TOMIGUCHI M, et al. Cardiac computed tomography-derived extracellular volume fraction in late anthracycline-induced cardiotoxicity[J/OL]. Int J Cardiol Heart Vasc, 2021, 34: 100797 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/34041357/. DOI: 10.1016/j.ijcha.2021.100797.
[26]
LOPEZ-MATTEI J, YANG E H, BALDASSARRE L A, et al. Cardiac computed tomographic imaging in cardio-oncology: an expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT). Endorsed by the International Cardio-Oncology Society (ICOS)[J]. J Cardiovasc Comput Tomogr, 2023, 17(1): 66-83. DOI: 10.1016/j.jcct.2022.09.002.
[27]
BALDASSARRE L A, GANATRA S, LOPEZ-MATTEI J, et al. Advances in multimodality imaging in cardio-oncology: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2022, 80(16): 1560-1578. DOI: 10.1016/j.jacc.2022.08.743.
[28]
UGANDER M, BAGI P S, OKI A J, et al. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction[J]. JACC Cardiovasc Imaging, 2012, 5(6): 596-603. DOI: 10.1016/j.jcmg.2012.01.016.
[29]
YIN G, CUI C, AN J, et al. Assessment of left ventricular systolic function by cardiovascular magnetic resonance compressed sensing real-time cine imaging combined with area-length method in normal sinus rhythm and atrial fibrillation[J/OL]. Front Cardiovasc Med, 2022, 9: 896816 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/35711346/. DOI: 10.3389/fcvm.2022.896816.
[30]
SCHWARTZ R G, MCKENZIE W B, ALEXANDER J, et al. Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography[J]. Am J Med, 1987, 82(6): 1109-1118. DOI: 10.1016/0002-9343(87)90212-9.
[31]
KWAN J M, ARBUNE A, HENRY M L, et al. Quantitative cardiovascular magnetic resonance findings and clinical risk factors predict cardiovascular outcomes in breast cancer patients[J/OL]. PLoS One, 2023, 18(5): e0286364 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/37252927/. DOI: 10.1371/journal.pone.0286364.
[32]
LI X M. Observational study of breast cancer related cardiovascular disease[D].Xi'an: Xi 'an Medical University, 2021. DOI: 10.27909/d.cnki.gxaxy.2021.000071.
[33]
SHEN Z, SHAO Z M, Cancer Support Rehabilitation Therapy Group of Chinese Medical Association Oncology Branch, the Drafting Committee of China Breast Cancer Related Heart Disease Diagnosis and Treat, et al. Chinese consensus of cardio-oncology in breast cancer[J]. China Oncol, 2022, 32(10): 1016-1036. DOI: 10.19401/j.cnki.1007-3639.2022.10.010.
[34]
WADHWA D, FALLAH-RAD N, GRENIER D, et al. Trastuzumab mediated cardiotoxicity in the setting of adjuvant chemotherapy for breast cancer: a retrospective study[J]. Breast Cancer Res Treat, 2009, 117(2): 357-364. DOI: 10.1007/s10549-008-0260-6.
[35]
ANANTHAPADMANABHAN S, DENG E, FEMIA G, et al. Intra- and inter-observer reproducibility of multilayer cardiac magnetic resonance feature tracking derived longitudinal and circumferential strain[J]. Cardiovasc Diagn Ther, 2020, 10(2): 173-182. DOI: 10.21037/cdt.2020.01.10.
[36]
CAU R, BASSAREO P, SURI J S, et al. The emerging role of atrial strain assessed by cardiac MRI in different cardiovascular settings: an up-to-date review[J]. Eur Radiol, 2022, 32(7): 4384-4394. DOI: 10.1007/s00330-022-08598-6.
[37]
CHAGANTI B T, NEGISHI K, OKAJIMA K. Role of myocardial strain imaging in cancer therapy-related cardiac dysfunction[J]. Curr Cardiol Rep, 2022, 24(6): 739-748. DOI: 10.1007/s11886-022-01692-7.
[38]
NEGISHI T, NEGISHI K. How to standardize measurement of global longitudinal strain[J]. J Med Ultrason (2001), 2022, 49(1): 45-52. DOI: 10.1007/s10396-021-01160-9.
[39]
HOUBOIS C P, NOLAN M, SOMERSET E, et al. Serial cardiovascular magnetic resonance strain measurements to identify cardiotoxicity in breast cancer: comparison with echocardiography[J]. JACC Cardiovasc Imaging, 2021, 14(5): 962-974. DOI: 10.1016/j.jcmg.2020.09.039.
[40]
LIU Z Y, LIU M, ZHONG X R, et al. Global longitudinal strain at 3 months after therapy can predict late cardiotoxicity in breast cancer[J]. Cancer Med, 2023, 12(12): 13374-13387. DOI: 10.1002/cam4.6039.
[41]
THAVENDIRANATHAN P, NEGISHI T, SOMERSET E, et al. Strain-guided management of potentially cardiotoxic cancer therapy[J]. J Am Coll Cardiol, 2021, 77(4): 392-401. DOI: 10.1016/j.jacc.2020.11.020.
[42]
ZHANG J, LI X, LIU J, et al. Early and dynamic detection of doxorubicin induced cardiotoxicity by myocardial contrast echocardiography combined with two-dimensional speckle tracking echocardiography in rats[J/OL]. Front Cardiovasc Med, 2022, 9: 1063499 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/36712239/. DOI: 10.3389/fcvm.2022.1063499.
[43]
JIA S Q, YAN C L, JIN Y H, et al. Research progress on the application of magnetic resonance T2 mapping technology in heart disease[J]. Chin J Magn Reson Imag, 2023, 14(6): 145-150. DOI: 10.12015/issn.1674-8034.2023.06.026.
[44]
BUSTIN A, MILOTTA G, ISMAIL T F, et al. Accelerated free-breathing whole-heart 3D T2 mapping with high isotropic resolution[J]. Magn Reson Med, 2020, 83(3): 988-1002. DOI: 10.1002/mrm.27989.
[45]
KARAMITSOS T D, ARVANITAKI A, KARVOUNIS H, et al. Myocardial tissue characterization and fibrosis by imaging[J]. JACC Cardiovasc Imaging, 2020, 13(5): 1221-1234. DOI: 10.1016/j.jcmg.2019.06.030.
[46]
KALAPOS A, SZABÓ L, DOHY Z, et al. Automated T1 and T2 mapping segmentation on cardiovascular magnetic resonance imaging using deep learning[J/OL]. Front Cardiovasc Med, 2023, 10: 1147581 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/37522085/. DOI: 10.3389/fcvm.2023.1147581.
[47]
GALÁN-ARRIOLA C, LOBO M, VÍLCHEZ-TSCHISCHKE J P, et al. Serial magnetic resonance imaging toIdentify early stages of anthracycline-induced cardiotoxicity[J]. J Am Coll Cardiol, 2019, 73(7): 779-791. DOI: 10.1016/j.jacc.2018.11.046.
[48]
PARK H S, HONG Y J, HAN K, et al. Ultrahigh-field cardiovascular magnetic resonance T1 and T2 mapping for the assessment of anthracycline-induced cardiotoxicity in rat models: validation against histopathologic changes[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 76 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/34134713/. DOI: 10.1186/s12968-021-00767-8.
[49]
THAVENDIRANATHAN P, ZHANG L L, ZAFAR A, et al. Myocardial T1 and T2 mapping by magnetic resonance in PatientsWithImmune checkpoint inhibitor-associated myocarditis[J]. J Am Coll Cardiol, 2021, 77(12): 1503-1516. DOI: 10.1016/j.jacc.2021.01.050.
[50]
SCHINDLER T H, DILSIZIAN V. Coronary microvascular dysfunction: clinical considerations and noninvasive diagnosis[J]. JACC Cardiovasc Imaging, 2020, 13(1Pt 1): 140-155. DOI: 10.1016/j.jcmg.2018.11.036.
[51]
LI Q S, LIU F, TANG Y Q, et al. The distribution of cardiovascular-related comorbidities in different adult-onset cancers and related risk factors: analysis of 10 year retrospective data[J/OL]. Front Cardiovasc Med, 2021, 8: 695454 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/34595215/. DOI: 10.3389/fcvm.2021.695454.
[52]
SUNG S Y, LEE J H, YANG K H, et al. Coronary event analysis in breast cancer patients who received breast-conserving surgery and post-operative radiotherapy: a Korean nationwide cohort study[J]. J Breast Cancer, 2020, 23(3): 291-302. DOI: 10.4048/jbc.2020.23.e30.

PREV Hemodynamic Imaging Techniques and New Advances in Carotid Artery Plaques
NEXT Advances in imaging features of histological subtypes of hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn