Share:
Share this content in WeChat
X
Clinical Article
Comparison of brain functional alterations in type 2 diabetes mellitus based on resting-state functional magnetic resonance imaging indices
ZHANG Ge  ZHANG Yanwei  LIU Taiyuan  WANG Han  WEI Wei  WANG Meiyun 

Cite this article as ZHANG G, ZHANG Y W, LIU T Y, et al. Comparison of brain functional alterations in type 2 diabetes mellitus based on resting-state functional magnetic resonance imaging indices[J]. Chin J Magn Reson Imaging, 2024, 15(5): 8-12. DOI:10.12015/issn.1674-8034.2024.05.002.


[Abstract] Objective To explore the abnormal spontaneous neural activity in type 2 diabetes mellitus (T2DM) without cognitive impairment by combining multiple indices of resting-state functional magnetic resonance imaging (rs-fMRI).Materials and Methods Thirty-four T2DM patients without cognitive impairment and 34 age, sex and education matched control subjects were included in this study. Both groups received rs-fMRI scans in a 3.0 T MRI scanner. Amplitude of low frequency fluctuation(ALFF), regional homogeneity (ReHo) and voxel-mirrored homotopic connectivity (VMHC) were calculated after image preprocessing. Two sample t-test was performed to explore the abnormal alterations of brain function and the relationship among rs-fMRI indices and clinical characteristics was also investigated.Results T2DM patients showed decreased spontaneous neural activity in the left prefrontal cortex, right angular gyrus, while increased neural activity in the left caudate nucleus and supplementary motor area (GRF corrected, voxel P<0.001, cluster P<0.05). We also observed a decreased correlation between ALFF and ReHo in the prefrontal cortex and angular gyrus of T2DM (r=0.592-0.767, corrected P<0.05).Conclusions The application of multiple rs-fMRI indices detected abnormal neural activities in different brain regions of T2DM patients, and the decreased coupling trend between ALFF and could help to understand the early changes before cognitive impairment appeared.
[Keywords] type 2 diabetes mellitus;resting-state functional magnetic resonance imaging;magnetic resonance imaging;amplitude of low frequency fluctuation;regional homogeneity;voxel-mirrored homotopic connectivity

ZHANG Ge1, 2   ZHANG Yanwei2   LIU Taiyuan1   WANG Han2   WEI Wei1   WANG Meiyun1*  

1 Department of Radiology, Henan Provincial People's Hospital, Zhengzhou 450000, China

2 Department of Radiology, Bethune International Peace Hospital (980th Hospital of Joint Logistic Support Force), Shijiazhuang 050000, China

Corresponding author: WANG M Y, E-mail: mywang@zzu.edu.cn

Conflicts of interest   None.

Received  2023-12-18
Accepted  2024-04-30
DOI: 10.12015/issn.1674-8034.2024.05.002
Cite this article as ZHANG G, ZHANG Y W, LIU T Y, et al. Comparison of brain functional alterations in type 2 diabetes mellitus based on resting-state functional magnetic resonance imaging indices[J]. Chin J Magn Reson Imaging, 2024, 15(5): 8-12. DOI:10.12015/issn.1674-8034.2024.05.002.

[1]
American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021[J]. Diabetes Care, 2021, 44(Suppl 1): S15-S33. DOI: 10.2337/dc21-S002.
[2]
BIESSELS G J, DESPA F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications[J]. Nat Rev Endocrinol, 2018, 14(10): 591-604. DOI: 10.1038/s41574-018-0048-7.
[3]
BU X, HU X, ZHANG L, et al. Investigating the predictive value of different resting-state functional MRI parameters in obsessive-compulsive disorder[J/OL]. Transl Psychiatry, 2019, 9(1): 17 [2023-12-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336781. DOI: 10.1038/s41398-018-0362-9.
[4]
GONG J, WANG J, QIU S, et al. Common and distinct patterns of intrinsic brain activity alterations in major depression and bipolar disorder: voxel-based meta-analysis[J/OL]. Transl Psychiatry, 2020, 10(1): 353 [2023-12-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573621. DOI: 10.1038/s41398-020-01036-5.
[5]
NAGAI Y, KIRINO E, TANAKA S, et al. Functional connectivity in autism spectrum disorder evaluated using rs-fMRI and DKI[J/OL]. Cereb Cortex, 2023, bhad451 [2023-12-18]. https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhad451/7451793?login=false. DOI: 10.1093/cercor/bhad451.
[6]
YAN W, PALANIYAPPAN L, LIDDLE P F, et al. Characterization of hemodynamic alterations in schizophrenia and bipolar disorder and their effect on resting-state fMRI functional connectivity[J]. Schizophr Bull, 2022, 48(3): 695-711. DOI: 10.1093/schbul/sbab140.
[7]
LIU M, LI J, LI J, et al. Altered spontaneous brain activity in patients with diabetic osteoporosis using regional homogeneity: A resting-state functional magnetic resonance imaging study[J/OL]. Front Aging Neurosci, 2022, 14: 851929 [2023-12-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120436. DOI: 10.3389/fnagi.2022.851929.
[8]
QI C X, HUANG X, SHEN Y. Altered intrinsic brain activities in patients with diabetic retinopathy using amplitude of low-frequency fluctuation: A resting-state fMRI study[J]. Diabetes Metab Syndr Obes, 2020, 13: 2833-2842. DOI: 10.2147/DMSO.S259476.
[9]
CUI Y, TANG T Y, LU C Q, et al. Disturbed interhemispheric functional and structural connectivity in type 2 diabetes[J]. J Magn Reson Imaging, 2022, 55(2): 424-434. DOI: 10.1002/jmri.27813.
[10]
Chinese Diabetes Society. Guidline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition)[J]. Chin J Diabetes Mellitus, 2021, 23(4): 314-409. DOI: 10.3760/cma.j.cn115791-20210221-00095.
[11]
YAN C G, WANG X D, ZUO X N, et al. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging[J]. Neuroinformatics, 2016, 14(3): 339-351. DOI: 10.1007/s12021-016-9299-4.
[12]
YANG H, LONG X Y, YANG Y, et al. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI[J]. Neuroimage, 2007, 36(1): 144-152. DOI: 10.1016/j.neuroimage.2007.01.054.
[13]
ZANG Y, JIANG T, LU Y, et al. Regional homogeneity approach to fMRI data analysis[J]. Neuroimage, 2004, 22(1): 394-400. DOI: 10.1016/j.neuroimage.2003.12.030.
[14]
ZUO X N, KELLY C, DI MARTINO A, et al. Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy[J]. J Neurosci, 2010, 30(45): 15034-15043. DOI: 10.1523/JNEUROSCI.2612-10.2010.
[15]
CUI Y, JIAO Y, CHEN Y C, et al. Altered spontaneous brain activity in type 2 diabetes: a resting-state functional MRI study[J]. Diabetes, 2014, 63(2): 749-760. DOI: 10.2337/db13-0519.
[16]
PIZZAGALLI D A, ROBERTS A C. Prefrontal cortex and depression[J]. Neuropsychopharmacology, 2022, 47(1): 225-246. DOI: 10.1038/s41386-021-01101-7.
[17]
BRIGGS R G, LIN Y H, DADARIO N B, et al. Anatomy and white matter connections of the middle frontal gyrus[J/OL]. World Neurosurg, 2021, 150: e520-e529 [2023-12-18]. https://www.sciencedirect.com/science/article/abs/pii/S1878875021004137?via%3Dihub. DOI: 10.1016/j.wneu.2021.03.045.
[18]
BRIGGS R G, KHAN A B, CHAKRABORTY A R, et al. Anatomy and white matter connections of the superior frontal gyrus[J]. Clin Anat, 2020, 33(6): 823-832. DOI: 10.1002/ca.23523.
[19]
XIA W, LUO Y, CHEN Y C, et al. Glucose fluctuations are linked to disrupted brain functional architecture and cognitive impairment[J]. J Alzheimers Dis, 2020, 74(2): 603-613. DOI: 10.3233/JAD-191217.
[20]
GUO P, ZHAO P, LV H, et al. Abnorpathy: A resting-state functional MRI study[J/OL]. Neural Plast, 2020, 2020: 8826787 [2023-12-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499295. DOI: 10.1155/2020/8826787.
[21]
XU Q H, LI Q Y, YU K, et al. Altered brain network centrality in patients with diabetic optic neuropathy: A resting-state fMRI study[J]. Endocr Pract, 2020, 26(12): 1399-1405. DOI: 10.4158/EP-2020-0045.
[22]
SHI W Q, TANG L Y, LIN Q, et al. Altered spontaneous brain activity patterns in diabetic patients with vitreous hemorrhage using amplitude of low-frequency fluctuation: A resting-state fMRI study[J]. Mol Med Rep, 2020, 22(3): 2291-2299. DOI: 10.3892/mmr.2020.11294.
[23]
SEGHIER M L. Multiple functions of the angular gyrus at high temporal resolution[J]. Brain Struct Funct, 2023, 228(1): 7-46. DOI: 10.1007/s00429-022-02512-y.
[24]
ARDILA A. A proposed reinterpretation of Gerstmann's syndrome[J]. Arch Clin Neuropsychol, 2014, 29(8): 828-833. DOI: 10.1093/arclin/acu056.
[25]
BANGEN K J, WERHANE M L, WEIGAND A J, et al. Reduced regional cerebral blood flow relates to poorer cognition in older adults with type 2 diabetes[J/OL]. Front Aging Neurosci, 2018, 10: 270 [2023-12-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139361. DOI: 10.3389/fnagi.2018.00270.
[26]
WANG Z L, ZOU L, LU Z W, et al. Abnormal spontaneous brain activity in type 2 diabetic retinopathy revealed by amplitude of low-frequency fluctuations: a resting-state fMRI study[J/OL]. Clin Radiol, 2017, 72(4): 340.e1-340.e7 [2023-12-18]. https://www.clinicalradiologyonline.net/article/S0009-9260(16)30475-5/abstract. DOI: 10.1016/j.crad.2016.11.012.
[27]
LIU D, CHEN L, DUAN S, et al. Disrupted balance of long- and short-range functional connectivity density in type 2 diabetes mellitus: A resting-state fMRI study[J/OL]. Front Neurosci, 2018, 12: 875 [2023-12-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277540. DOI: 10.3389/fnins.2018.00875.
[28]
BAKER L D, CROSS D J, MINOSHIMA S, et al. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes[J]. Arch Neurol, 2011, 68(1): 51-57. DOI: 10.1001/archneurol.2010.225.
[29]
JI G J, HU P, LIU T T, et al. Functional connectivity of the corticobasal ganglia-thalamocortical network in parkinson disease: A systematic review and meta-analysis with cross-validation[J]. Radiology, 2018, 287(3): 973-982. DOI: 10.1148/radiol.2018172183.
[30]
FU Y, GU M, WANG R, et al. Abnormal functional connectivity of the frontostriatal circuits in type 2 diabetes mellitus[J/OL]. Front Aging Neurosci, 2023, 14: 1055172 [2023-12-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846649. DOI: 10.3389/fnagi.2022.1055172.
[31]
BARBER A D, SARPAL D K, JOHN M, et al. Age-normative pathways of striatal connectivity related to clinical symptoms in the general population[J]. Biol Psychiatry, 2019, 85(11): 966-976. DOI: 10.1016/j.biopsych.2019.01.024.
[32]
LIU H, LIU J, PENG L, et al. Changes in default mode network connectivity in different glucose metabolism status and diabetes duration[J/OL]. Neuroimage Clin, 2019, 21: 101629 [2023-12-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411780. DOI: 10.1016/j.nicl.2018.101629.
[33]
LIU J, YANG X, LI Y, et al. Cerebral blood flow alterations in type 2 diabetes mellitus: A systematic review and meta-analysis of arterial spin labeling studies[J/OL]. Front Aging Neurosci, 2022, 14: 847218 [2023-12-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8888831. DOI: 10.3389/fnagi.2022.847218.
[34]
CUKIERMAN-YAFFE T, GERSTEIN H C, COLHOUN H M, et al. Effect of dulaglutide on cognitive impairment in type 2 diabetes: an exploratory analysis of the REWIND trial[J]. Lancet Neurol, 2020, 19(7): 582-590. DOI: 10.1016/S1474-4422(20)30173-3.

PREV Changes of cerebral functional hierarchy in AD patients based on cerebral-cerebellar connectivity gradients
NEXT Changes of cortical thickness in Parkinson,s disease patients with pain: A structural MRI study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn