Share:
Share this content in WeChat
X
Clinical Article
A study on the degree centrality of patients of tension-type headache based on resting state functional magnetic resonance imaging
ZHANG Shuxian  GONG Ping  XU Qinyan  WANG Jili  WANG Xizhen  WANG Chao  SUN Xihe 

Cite this article as ZHANG S X, GONG P, XU Q Y, et al. A study on the degree centrality of patients of tension-type headache based on resting state functional magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2024, 15(5): 19-23. DOI:10.12015/issn.1674-8034.2024.05.004.


[Abstract] Objective To investigate the alterations in the centrality of whole brain network nodes of tension-type headache (TTH) patients in the slow-4 (0.027-0.073 Hz) band and slow-5 (0.010-0.027 Hz) band and the correlation with clinical features using resting state functional magnetic resonance imaging (rs-fMRI) with degree centrality (DC).Materials and Methods Thirty-three patients with TTH who went to the Department of Neurology of Affiliated Hospital of Weifang Medical University from May 2018 to July 2019 and 38 matched healthy controls were collected for resting state functional magnetic resonance scanning. The method of degree centrality was used to analyze the difference of DC values in different frequency bands between TTH group and healthy control group. The correlation between the abnormal DC value and Visual Analog Scale (VAS) score, disease duration and headache attack frequency of TTH patients was analyzed.Results Compared with the healthy control group, in the slow-5 (0.010-0.027 Hz) frequency band, the DC values of the right middle frontal gyrus and the right dorsolateral superior frontal gyrus of TTH patients were significantly increased; however, in the slow 4 (0.027-0.073 Hz) frequency band, there was no significant difference in DC value between TTH group and healthy control group (GRF correction, voxel level P<0.001, cluster level P<0.05). In addition, the results of correlation analysis showed that there was no significant correlation between abnormal DC brain regions and VAS scores, disease duration and headache attack frequency.Conclusions The middle frontal gyrus and superior frontal gyrus were involved in the integration and processing of pain signals, so they might be the key hub of TTH; the slow-5 frequency band was more sensitive in detecting the DC value of TTH than the slow-4 frequency band.
[Keywords] tension-type headache;degree centrality;resting state functional magnetic resonance imaging;magnetic resonance imaging;frequency dependent

ZHANG Shuxian1   GONG Ping1   XU Qinyan1   WANG Jili2   WANG Xizhen1   WANG Chao3*   SUN Xihe1*  

1 Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China

2 Department of Medical Imaging, Shouguang City People's Hospital, Weifang 262700, China

3 Department of Basic Support, Affiliated Hospital of Weifang Medical University, Weifang 261031, China

Corresponding author: WANG C, E-mail: 63985634@qq.com SUN X H, E-mail: sunxihe8130@163.com

Conflicts of interest   None.

Received  2023-10-27
Accepted  2024-04-30
DOI: 10.12015/issn.1674-8034.2024.05.004
Cite this article as ZHANG S X, GONG P, XU Q Y, et al. A study on the degree centrality of patients of tension-type headache based on resting state functional magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2024, 15(5): 19-23. DOI:10.12015/issn.1674-8034.2024.05.004.

[1]
ASHINA S, MITSIKOSTAS D D, LEE M J, et al. Tension-type headache[J/OL]. Nat Rev Dis Primers, 2021, 7 (1): 24 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/33767185/. DOI: 10.1038/s41572-021-00257-2.
[2]
Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition[J]. Cephalalgia, 2018, 38 (1): 1-211. DOI: 10.1177/0333102417738202.
[3]
COLLABORATORS G B D H. Global, regional, and national burden of migraine and tension-type headache, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2018, 17(11): 954-976. DOI: 10.1016/S1474-4422(18)30322-3.
[4]
YU S, LIU R, ZHAO G, et al. The prevalence and burden of primary headaches in China: a population-based door-to-door survey[J]. Headache, 2012, 52 (4): 582-591. DOI: 10.1111/j.1526-4610.2011.02061.x.
[5]
WANG P, DU H, CHEN N, et al. Regional homogeneity abnormalities in patients with tension-type headache: a resting-state fMRI study[J]. Neurosci Bull, 2014, 30(6): 949-955. DOI: 10.1007/s12264-013-1468-6.
[6]
ZHANG S, LI H, XU Q, et al. Regional homogeneity alterations in multi-frequency bands in tension-type headache: a resting-state fMRI study[J/OL]. J Headache Pain, 2021, 22 (1): 129 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/34711175/. DOI: 10.1186/s10194-021-01341-4.
[7]
LI M T, ZHANG S X, LI X, et al. Amplitude of low-frequency fluctuation in multiple frequency bands in tension-type headache patients: A resting-state functional magnetic resonance imaging study[J/OL]. Front Neurosci, 2021, 15: 742973 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/34759792/. DOI: 10.3389/fnins.2021.742973.
[8]
WANG X, JIAO D, ZHANG X, et al. Altered degree centrality in childhood absence epilepsy: A resting-state fMRI study[J]. J Neurol Sci, 2017, 373: 274-279. DOI: 10.1016/j.jns.2016.12.054.
[9]
LUO X, GUO L, DAI X J, et al. Abnormal intrinsic functional hubs in alcohol dependence: evidence from a voxelwise degree centrality analysis[J]. Neuropsychiatr Dis Treat, 2017, 13: 2011-2020. DOI: 10.2147/ndt.S142742.
[10]
ZHOU M, LI X L, GAO Q S. Multiscale brain abnormalities in young male military patients with depression based on resting-state functional magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2023, 14(3): 42-47, 64. DOI: 10.12015/issn.1674-8034.2023.03.008.
[11]
GAO T T, WANG M X, TANG W, et al. Resting-state functional magnetic resonance imaging in patients with nocturnal enuresis[J]. Chin J Magn Reson Imaging, 2022, 13(6): 71-75. DOI: 10.12015/issn.1674-8034.2022.06.014.
[12]
LI Y N, LI H, ZHAO L Y, et al. Functional imaging analysis of the whole brain ALFF and DC in MDD after medication treatment[J]. Chin J Magn Reson Imaging, 2022, 13(1): 64-69. DOI: 10.12015/issn.1674-8034.2022.01.013.
[13]
LEE M J, PARK B Y, CHO S, et al. Increased connectivity of pain matrix in chronic migraine: a resting-state functional MRI study[J/OL]. J Headache Pain, 2019, 20 (1): 29 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/30909865/. DOI: 10.1186/s10194-019-0986-z.
[14]
KE J, YU Y, ZHANG X, et al. Functional alterations in the posterior insula and cerebellum in migraine without aura: A resting-state MRI study[J/OL]. Front Behav Neurosci, 2020, 14: 567588 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/33132860/. DOI: 10.3389/fnbeh.2020.567588.
[15]
YANG H G, LIU WV, WEN Z, et al. Altered voxel-level whole-brain functional connectivity in multiple system atrophy patients with depression symptoms[J/OL]. BMC Psychiatry, 2022, 22 (1): 279 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/35443639/. DOI: 10.1186/s12888-022-03893-4.
[16]
BUZSAKI G, DRAGUHN A. Neuronal oscillations in cortical networks[J]. Science, 2004, 304(5679): 1926-1929. DOI: 10.1126/science.1099745.
[17]
ZUO X N, DI MARTINO A, KELLY C, et al. The oscillating brain: complex and reliable[J]. Neuroimage, 2010, 49(2): 1432-1445. DOI: 10.1016/j.neuroimage.
[18]
Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition (beta version)[J]. Cephalalgia, 2013, 33(9): 629-808. DOI: 10.1177/0333102413485658.
[19]
JIA X Z, WANG J, SUN H Y, et al. RESTplus: an improved toolkit for resting-state functional magnetic resonance imaging data processing[J]. Sci Bull (Beijing), 2019, 64(14): 953-954. DOI: 10.1016/j.scib.2019.05.008.
[20]
BUCKNER R L, SEPULCRE J, TALUKDAR T, et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease[J]. J Neurosci, 2009, 29 (6): 1860-1873. DOI: 10.1523/JNEUROSCI.5062-08.2009.
[21]
YAN C G, WANG X D, ZUO X N, et al. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging[J]. Neuroinformatics, 2016, 14 (3): 339-351. DOI: 10.1007/s12021-016-9299-4.
[22]
ONG W Y, STOHLER C S, HERR D R. Role of the prefrontal cortex in pain processing[J]. Mol Neurobiol, 2019, 56(2): 1137-1166. DOI: 10.1007/s12035-018-1130-9.
[23]
LU L, LI F, WANG P, et al. Altered hypothalamic functional connectivity in post-traumatic headache after mild traumatic brain injury[J/OL]. J Headache Pain, 2020, 21(1): 93 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/32723299/. DOI: 10.1186/s10194-020-01164-9.
[24]
TROJAK B, MEILLE V, JONVAL L, et al. Interest of targeting either cortical area Brodmann 9 or 46 in rTMS treatment for depression: a preliminary randomized study[J]. Clin Neurophysiol, 2014, 125(12): 2384-2389. DOI: 10.1016/j.clinph.2014.04.001.
[25]
LORENZ J, MINOSHIMA S, CASEY K L. Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation[J]. Brain, 2003, 126(Pt 5): 1079-1091. DOI: 10.1093/brain/awg102.
[26]
CHEN C, YAN M, YU Y, et al. Alterations in regional homogeneity assessed by fMRI in patients with migraine without aura[J/OL]. J Med Syst, 2019, 43(9): 298 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/31352647/. DOI: 10.1007/s10916-019-1425-z.
[27]
ZHANG C C, WANG J L, WANG Y Q, et al. A preliminary study of cerebral blood flow perfusion based on the ASL in patients with tensiontype headache in the resting states[J]. Chin J Magn Reson Imaging, 2022, 13(1): 76-80. DOI: 10.12015/issn.1674-8034.2022.01.015.
[28]
BRIGHINA F, PIAZZA A, VITELLO G, et al. rTMS of the prefrontal cortex in the treatment of chronic migraine: a pilot study[J]. J Neurol Sci, 2004, 227(1): 67-71. DOI: 10.1016/j.jns.2004.08.008.
[29]
MA X T, LIU Z Y, QIANG K, et al. Pathogenesis of primary dysmenorrhea and therapeutic effect of acupuncture[J]. Chin J Med Imaging Technol, 2022, 38(9): 1301-1306. DOI: 10.13929/j.issn.1003-3289.2022.09.005.
[30]
LIAO H, YI J, CAI S, et al. Changes in degree centrality of network nodes in different frequency bands in Parkinson's disease with depression and without depression[J/OL]. Front Neurosci, 2021, 15: 638554 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/33828449/. DOI: 10.3389/fnins.2021.638554.
[31]
HAN Y, WANG J, ZHAO Z, et al. Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study[J]. Neuroimage, 2011, 55(1): 287-295. DOI: 10.1016/j.neuroimage.

PREV Changes of cortical thickness in Parkinson,s disease patients with pain: A structural MRI study
NEXT Prenatal MRI of fetal hippocampal infolding angle change in middle and third trimester
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn