Share:
Share this content in WeChat
X
Clinical Article
Prenatal MRI of fetal hippocampal infolding angle change in middle and third trimester
SUN Yue  CAO Yimin  YI Zexi  MENG Weixin  ZHOU Lixia 

Cite this article as SUN Y, CAO Y M, YI Z X, et al. Prenatal MRI of fetal hippocampal infolding angle change in middle and third trimester[J]. Chin J Magn Reson Imaging, 2024, 15(5): 24-27, 101. DOI:10.12015/issn.1674-8034.2024.05.005.


[Abstract] Objective Prenatal MRI was used to study the changes of the hippocampal infolding angle (HIA) of fetuses in the second and third trimester of pregnancy.Materials and Methods The imaging data of normal fetuses in the second and third trimester of pregnancy undergoing prenatal MRI in the Second Hospital of Hebei Medical University from January 2018 to December 2021 were collected and were retrospectively analyzed. HIA in the coronal section of fetal brain MRI using the fast imaging employing steady state acquisition (FIESTA) sequence was measured, the normal range of HIA in fetuses in the second and third trimester of pregnancy was analyzed, to explore its correlation with gestational age changes and clinical application value.Results A total of 139 cases of fetuses in the second and third trimester of pregnancy were included in the study, with a gestational age ranging from 20 to 38 weeks (mean 29.17±3.90 weeks), and a male-to-female ratio of 105∶34. The data was divided into 6 groups based on gestational age, and the confidence interval of fetal HIA was analyzed. With increasing gestational age, the HIA on both sides increased linearly (R2=0.803, 0.836, both P<0.001), and the HIA on the right side was greater than that on the left side. However, no gender differences were found in the left and right sides (P=0.898).Conclusions Prenatal MRI revealed that the changes of the HIA in fetuses in the second and third trimester of pregnancy follows a certain pattern, which can provide imaging diagnostic evidence for diseases related to hippocampal structural abnormalities either in utero or after birth.
[Keywords] fetus;hippocampal infolding angle;magnetic resonance imaging;development;hippocampal structure

SUN Yue   CAO Yimin   YI Zexi   MENG Weixin   ZHOU Lixia*  

Department of Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang 050051, China

Corresponding author: ZHOU L X, E-mail: doctorzhou@126.com

Conflicts of interest   None.

Received  2024-01-14
Accepted  2024-04-17
DOI: 10.12015/issn.1674-8034.2024.05.005
Cite this article as SUN Y, CAO Y M, YI Z X, et al. Prenatal MRI of fetal hippocampal infolding angle change in middle and third trimester[J]. Chin J Magn Reson Imaging, 2024, 15(5): 24-27, 101. DOI:10.12015/issn.1674-8034.2024.05.005.

[1]
FU T Y, HO C R, LIN C H, et al. Hippocampal malrotation: a genetic developmental anomaly related to epilepsy?[J/OL]. Brain Sci, 2021, 11(4): 463 [2023-07-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067421/. DOI: 10.3390/brainsci11040463.
[2]
FUNG C M. Effects of intrauterine growth restriction on embryonic hippocampal dentate gyrus neurogenesis and postnatal critical period of synaptic plasticity that govern learning and memory function[J/OL]. Front Neurosci, 2023, 17: 1092357 [2023-07-30]. https://pubmed.ncbi.nlm.nih.gov/37008232/. DOI: 10.3389/fnins.2023.1092357.
[3]
TOPRAK E, SAYAL H B. Ultrasonographic imaging of the fetal hippocampus[J]. Arch Gynecol Obstet, 2024, 309(5): 1943-1949. DOI: 10.1007/s00404-023-07093-7.
[4]
DEMIR S S, CAGLIYAN E, SARIOGLU F C, et al. Diagnosis of central nervous system abnormalities: comparison of prenatal neurosonography and foetal magnetic resonance imaging findings[J]. J Obstet Gynaecol, 2022, 42(3): 389-395. DOI: 10.1080/01443615.2021.1907560.
[5]
IDUNKOVA A, LACINOVA L, DUBIEL-HOPPANOVA L. Stress, depression, and hippocampus: from biochemistry to electrophysiology[J]. Gen Physiol Biophys, 2023, 42(2): 107-122. DOI: 10.4149/gpb_2023001.
[6]
ÖZDEMIR M, SOYSAL H, ERASLAN Ö, et al. Normative hippocampal volumetric measurements using magnetic resonance imaging[J]. Turk J Med Sci, 2019, 49(5): 1464-1470. DOI: 10.3906/sag-1903-233.
[7]
RIGHINI A, ZIRPOLI S, PARAZZINI C, et al. Hippocampal infolding angle changes during brain development assessed by prenatal MR imaging[J]. AJNR Am J Neuroradiol, 2006, 27(10): 2093-2097.
[8]
BAJIC D, CANTO MOREIRA N, WIKSTRÖM J, et al. Development of the hippocampal region demonstrated by fetal MRI. A preliminary report[J]. Neuroradiol J, 2011, 24(3): 461-463. DOI: 10.1177/197140091102400319.
[9]
MACHADO-RIVAS F, GANDHI J, CHOI J J, et al. Normal growth, sexual dimorphism, and lateral asymmetries at fetal brain MRI[J]. Radiology, 2022, 303(1): 162-170. DOI: 10.1148/radiol.211222.
[10]
XU F F, GE X T, SHI Y G, et al. Morphometric development of the human fetal cerebellum during the early second trimester[J/OL]. Neuroimage, 2020, 207: 116372 [2023-07-30] https://pubmed.ncbi.nlm.nih.gov/31751665/. DOI: 10.1016/j.neuroimage.2019.116372.
[11]
BAO Z K, ZHANG Q, PAN M M, et al. Alterations of brain metrics in fetuses of women with polycystic ovary syndrome: a retrospective study based on fetal magnetic resonance imaging[J/OL]. BMC Pregnancy Childbirth, 2021, 21(1): 557 [2023-07-30] https://pubmed.ncbi.nlm.nih.gov/31751665/. DOI: 10.1186/s12884-021-04015-w.
[12]
WANG L F, LI Z, YU Q W. Anatomical features of normal development of the hippocampus and the parahippocampal gyrus in full-term neonates during the prenatal period: an analysis based on magnetic resonance[J]. J Precis Med, 2019, 34(4): 302-307. DOI: 10.13362/j.jpmed.201904005.
[13]
KLINE-FATH B M. Ultrasound and MR imaging of the normal fetal brain[J]. Neuroimaging Clin N Am, 2019, 29(3): 339-356. DOI: 10.1016/j.nic.2019.03.001.
[14]
OKADA Y, KATO T, IWAI K, et al. Evaluation of hippocampal infolding using magnetic resonance imaging[J]. Neuroreport, 2003, 14(10): 1405-1409. DOI: 10.1097/01.wnr.0000078381.40088.d0.
[15]
YAO Y, WANG F, ZHAO B. Hippocampus: MR imaging of the normal anatomy, variations and common lesions[J]. J Med Imag, 2021, 31(8): 1426-1429.
[16]
JURIC-SEKHAR G, HEVNER R F. Malformations of cerebral cortex development: molecules and mechanisms[J]. Annu Rev Pathol, 2019, 14: 293-318. DOI: 10.1146/annurev-pathmechdis-012418-012927.
[17]
KNEZOVIĆ V, KASPRIAN G, ŠTAJDUHAR A, et al. Underdevelopment of the human hippocampus in callosal agenesis: an in vivo fetal MRI study[J]. AJNR Am J Neuroradiol, 2019, 40(3): 576-581. DOI: 10.3174/ajnr.A5986.
[18]
LEE J E, GLEESON J G. Cilia in the nervous system: linking cilia function and neurodevelopmental disorders[J]. Curr Opin Neurol, 2011, 24(2): 98-105. DOI: 10.1097/WCO.0b013e3283444d05.
[19]
HIGASHIJIMA T, SHIROZU H, SAITSU H, et al. Incomplete hippocampal inversion in patients with mutations in genes involved in sonic hedgehog signaling[J/OL]. Heliyon, 2023, 9(4): e14712 [2023-07-30] https://pubmed.ncbi.nlm.nih.gov/37012904/. DOI: 10.1016/j.heliyon.2023.e14712.
[20]
ACAY M B, KÖKEN R, ÜNLÜ E, et al. Evaluation of hippocampal infolding angle and incomplete hippocampal inversion in pediatric patients with epilepsy and febrile seizures[J]. Diagn Interv Radiol, 2017, 23(4): 326-330. DOI: 10.5152/dir.2017.160077.
[21]
TIAN L, ZHANG Z H, LIU S W, et al. 7.0T MRI study on development of fetal hippocampal formation in the second trimester[J]. Chin J Anat Clin, 2011, 16(2): 99-102. DOI: 10.3969/j.issn.1671-7163.2011.02.003.
[22]
BAJIC D, MOREIRA N C, WIKSTRÖM J, et al. Asymmetric development of the hippocampal region is common: a fetal MR imaging study[J]. AJNR Am J Neuroradiol, 2012, 33(3): 513-518. DOI: 10.3174/ajnr.A2814.
[23]
WHITEHEAD M T, LIMPEROPOULOS C, SCHLATTERER S D, et al. Hippocampal rotation is associated with ventricular atrial size[J]. Pediatr Radiol, 2023, 53(9): 1941-1950. DOI: 10.1007/s00247-023-05687-6.
[24]
DE ASIS-CRUZ J, ANDESCAVAGE N, LIMPEROPOULOS C. Adverse prenatal exposures and fetal brain development: insights from advanced fetal magnetic resonance imaging[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2022, 7(5): 480-490. DOI: 10.1016/j.bpsc.2021.11.009.
[25]
XI C C, SHI X Q, WANG Y J, et al. Influence of bifenthrin exposure at different gestational stages on the neural development[J/OL]. Ecotoxicol Environ Saf, 2023, 263: 115365 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/37597292/. DOI: 10.1016/j.ecoenv.2023.115365.
[26]
POELS E M P, KAMPERMAN A M, BIJMA H H, et al. Brain development after intrauterine exposure to lithium: a magnetic resonance imaging study in school-age children[J]. Bipolar Disord, 2023, 25(3): 181-190. DOI: 10.1111/bdi.13297.
[27]
DEMERS C H, HANKIN B L, HENNESSEY E P, et al. Maternal adverse childhood experiences and infant subcortical brain volume[J/OL]. Neurobiol Stress, 2022, 21: 100487 [2023-07-30]. https://pubmed.ncbi.nlm.nih.gov/36532374/. DOI: 10.1016/j.ynstr.2022.100487.
[28]
NEVAREZ-BREWSTER M, DEMERS C H, MEJIA A, et al. Longitudinal and prospective assessment of prenatal maternal sleep quality and associations with newborn hippocampal and amygdala volume[J/OL]. Dev Cogn Neurosci, 2022, 58: 101174 [2023-07-30]. https://pubmed.ncbi.nlm.nih.gov/36375383/. DOI: 10.1016/j.dcn.2022.101174.
[29]
GRAHAM A M, DOYLE O, TILDEN E L, et al. Effects of maternal psychological stress during pregnancy on offspring brain development: considering the role of inflammation and potential for preventive intervention[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2022, 7(5): 461-470. DOI: 10.1016/j.bpsc.2021.10.012.
[30]
HENDRIX C L, SRINIVASAN H, FELICIANO I, et al. Fetal hippocampal connectivity shows dissociable associations with maternal cortisol and self-reported distress during pregnancy[J/OL]. Life, 2022, 12(7): 943 [2023-07-30]. https://pubmed.ncbi.nlm.nih.gov/35888033/. DOI: 10.3390/life12070943.
[31]
CANINI M, PECCO N, CAGLIONI M, et al. Maternal anxiety-driven modulation of fetal limbic connectivity designs a backbone linking neonatal brain functional topology to socio-emotional development in early childhood[J]. J Neurosci Res, 2023, 101(9): 1484-1503. DOI: 10.1002/jnr.25207.
[32]
WU Y, LU Y C, JACOBS M, et al. Association of prenatal maternal psychological distress with fetal brain growth, metabolism, and cortical maturation[J/OL]. JAMA Netw Open, 2020, 3(1): e1919940 [2023-07-30]. https://pubmed.ncbi.nlm.nih.gov/31995213/. DOI: 10.1001/jamanetworkopen.2019.19940.
[33]
TRIPLETT R L, LEAN R E, PARIKH A, et al. Association of prenatal exposure to early-life adversity with neonatal brain volumes at birth[J/OL]. JAMA Netw Open, 2022, 5(4): e227045 [2023-07-30]. https://pubmed.ncbi.nlm.nih.gov/35412624/. DOI: 10.1001/jamanetworkopen.2022.7045.

PREV A study on the degree centrality of patients of tension-type headache based on resting state functional magnetic resonance imaging
NEXT Prognostic factors analysis of acute anterior circulation ischemic stroke with drug treatment based on TASL technology
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn