Share:
Share this content in WeChat
X
Clinical Article
Individual-based morphological brain network and its association with acute mild traumatic brain injury
YAN Jiahao  HUANG Wenjing  WANG Jun  LI Yan  XIONG Diaohan  ZHANG Jing 

Cite this article as YAN J H, HUANG W J, WANG J, et al. Individual‐based morphological brain network and its association with acute mild traumatic brain injury[J]. Chin J Magn Reson Imaging, 2024, 15(5): 55-60. DOI:10.12015/issn.1674-8034.2024.05.010.


[Abstract] Objective To explore the changes of individual-based morphological brain network topological properties in patients with mild traumatic brain injury (mTBI).Materials and Methods A sample of 43 mTBI patients and 37 healthy controls (HC) were included. After T1WI data of all subjects were collected, using the Freesurfer to do data preprocessing and geting severals morphological indices (cortical thickness, gray matter volume, brain surface area, sulcus depth, mean curvature), which construct the individual-based morphological brain network, and then Graph Theoretical Network Analysis (GRETNA) was utilized to calculate the network topological properties. The last, differences between the two groups were compared based on two-samples t-test, with false discovery rate (FDR) corrections for multiple comparisons.Results Compared with the HC group, the mTBI group showed approximately differences in nodal degree centrality (DC), the brain regions of left frontal pole transverse gyrus (t=-2.186, P=0.032), central sulcus (t=-2.617, P=0.011), horizontal anterior segment of lateral fissure (t=-2.456, P=0.016) and right pole occipital (t=-2.013, P=0.048) were increased, and nodal efficiency (Ne) of left frontal pole transverse gyrus (t=-2.182, P=0.032;), central sulcus (t=-2.226, P=0.029), horizontal anterior segment of lateral fissure (t=-2.440, P=0.017) and right precuneus (t=-2.207, P=0.030) were increased, which were related to cognitive and executive functions; in addition, the memory and emotional regulation cortexs suffered biggest drop, the DC of the nodes in the left cuneus (t=2.173, P=0.033), angular return (t=2.498, P=0.015) and parahippocampal gyrus (t=4.009, P<0.001) were dropped, and Ne in the left planum polare of the superior temporal gyrus (t=2.394, P=0.019), angular return (t=2.668, P=0.009), parahippocampal gyrus (t=4.671, P<0.001), callosal sulcus (t=2.189, P=0.032) were dropped. The global topological properties differences were not statistically significant (P>0.05).Conclusions The individual morphological brain network of mTBI in the acute phase still retains the small-world attribute. The abnormally elevated nodes DC and Ne of mTBI are mainly concentrated in brain regions related to cognitive and executive functions, reflecting the brain's stress compensation for cognitive functions. The abnormally reduced nodes DC and Ne, mainly concentrated in brain regions related to memory and emotion regulation, revealed cognitive and emotional changes in the acute phase. This provides a new perspective for the study of mTBI in the acute phase and provides further clues for the exploration of the mechanism of brain network alteration.
[Keywords] mild traumatic brain injury;structural magnetic resonance imaging;magnetic resonance imaging;morphological brain network;graph theory analysis

YAN Jiahao1, 2, 3   HUANG Wenjing1, 2, 3   WANG Jun1, 2, 3   LI Yan4   XIONG Diaohan1, 2, 3   ZHANG Jing1, 2, 3*  

1 Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China

2 Second Clinical School, Lanzhou University, Lanzhou 730000, China

3 Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China

4 Mathematics and Statistics School, Lanzhou University, Lanzhou 730000, China

Corresponding author: ZHANG J, E-mail: lztong2001@163.com

Conflicts of interest   None.

Received  2023-08-23
Accepted  2024-03-04
DOI: 10.12015/issn.1674-8034.2024.05.010
Cite this article as YAN J H, HUANG W J, WANG J, et al. Individual‐based morphological brain network and its association with acute mild traumatic brain injury[J]. Chin J Magn Reson Imaging, 2024, 15(5): 55-60. DOI:10.12015/issn.1674-8034.2024.05.010.

[1]
ZHENG X Y, YI Q, XU X J, et al. Trends and external causes of traumatic brain injury and spinal cord injury mortality in south China, 2014-2018: an ecological study[J/OL]. BMC Public Health, 2021, 21(1): 2225 [2023-08-23]. https://pubmed.ncbi.nlm.nih.gov/34876065/. DOI: 10.1186/s12889-021-12225-2.
[2]
WONG J K Y, CHURCHILL N W, GRAHAM S J, et al. Altered connectivity of default mode and executive control networks among female patients with persistent post-concussion symptoms[J]. Brain Inj, 2023, 37(2): 147-158. DOI: 10.1080/02699052.2022.2163290.
[3]
BRENNAN D, DELANEY C, FARRELL M, et al. Polypathology-associated neurodegeneration after remote head injury[J]. Clin Neuropathol, 2023, 42(6): 201-211. DOI: 10.5414/NP301576.
[4]
LI Y, WANG N, WANG H, et al. Surface-based single-subject morphological brain networks: Effects of morphological index, brain parcellation and similarity measure, sample size-varying stability and test-retest reliability[J/OL]. Neuroimage, 2021, 235: 118018 [2023-08-23]. https://pubmed.ncbi.nlm.nih.gov/33794358/. DOI: 10.1016/j.neuroimage.2021.118018.
[5]
HE C, CORTES J M, KANG X, et al. Individual-based morphological brain network organization and its association with autistic symptoms in young children with autism spectrum disorder[J]. Hum Brain Mapp, 2021, 42(10): 3282-3294. DOI: 10.1002/hbm.25434.
[6]
ZHANG W, DUAN Y, QI L, et al. Distinguishing patients with MRI-negative temporal lobe epilepsy from normal controls based on individual morphological brain network[J]. Brain Topogr, 2023, 36(4): 554-565. DOI: 10.1007/s10548-023-00962-z.
[7]
HOMAN P, ARGYELAN M, DEROSSE P, et al. Structural similarity networks predict clinical outcome in early-phase psychosis[J]. Neuropsychopharmacology, 2019, 44(5): 915-922. DOI: 10.1038/s41386-019-0322-y.
[8]
ZHENG W, EILAMSTOCK T, WU T, et al. Multi-feature based network revealing the structural abnormalities in autism spectrum disorder[J]. IEEE Trans Affect Comput, 2019, 12(3): 732-742. DOI: 10.1109/TAFFC.2018.2890597.
[9]
Lin N, Wu S, Ji S. A morphologically individualized deep learning brain injury model[J]. J Neurotrauma, 2023, 40(19-20): 2233-2247. DOI: 10.1089/neu.2022.0413.
[10]
KONG XZ, WANG X, HUANG L, et al. Measuring individual morphological relationship of cortical regions[J]. J Neurosci Methods, 2014, 237: 103-107. DOI: 10.1016/j.jneumeth.2014.09.003.
[11]
WANG H, JIN X, ZHANG Y, et al. Single-subject morphological brain networks: connectivity mapping, topological characterization and test-retest reliability[J/OL]. Brain Behav, 2016, 6(4): e00448 [2023-08-23]. https://pubmed.ncbi.nlm.nih.gov/27088054/. DOI: 10.1002/brb3.448.
[12]
FORNITO A, ZALESKY A, BREAKSPEAR M. Graph analysis of the human connectome: promise, progress, and pitfalls[J]. Neuroimage, 2013, 80: 426-444. DOI: 10.1016/j.neuroimage.2013.04.087.
[13]
KUANG H M, CHEN Y, HUANG J L, et al. Acute changes in the resting brain networks in concussion patients: Small-world topology perspective[J/OL]. J Integr Neurosci, 2024, 23(1): 12 [2023-08-23]. https://pubmed.ncbi.nlm.nih.gov/38287842/. DOI: 10.31083/j.jin2301012.
[14]
WANG S, GAN S, YANG X, et al. Decoupling of structural and functional connectivity in hubs and cognitive impairment after mild traumatic brain injury[J]. Brain Connect, 2021, 11(9): 745-758. DOI: 10.1089/brain.2020.0852.
[15]
VIRJI-BABUL N, HILDERMAN C G, MAKAN N, et al. Changes in functional brain networks following sports-related concussion in adolescents[J]. J Neurotrauma, 2014, 31(23): 1914-1919. DOI: 10.1089/neu.2014.3450.
[16]
WARE A L, YEATES K O, GEERAERT B, et al. Structural connectome differences in pediatric mild traumatic brain and orthopedic injury[J]. Hum Brain Mapp, 2022, 43(3): 1032-1046. DOI: 10.1002/hbm.25705.
[17]
WARE A L, ONICAS A I, ABDEEN N, et al. Altered longitudinal structural connectome in paediatric mild traumatic brain injury: an advancing concussion assessment in paediatrics study[J/OL]. Brain Commun, 2023, 5(3): fcad173 [2023-08-23]. https://pubmed.ncbi.nlm.nih.gov/37324241/. DOI: 10.1093/braincomms/fcad173.
[18]
IMMS P, CLEMENTE A, COOK M, et al. The structural connectome in traumatic brain injury: A meta-analysis of graph metrics[J]. Neurosci Biobehav Rev, 2019, 99: 128-137. DOI: 10.1016/j.neubiorev.2019.01.002.
[19]
HENRY T R, DUFFY K A, RUDOLPH M D, et al. Bridging global and local topology in whole-brain networks using the network statistic jackknife[J]. Netw Neurosci, 2020, 4(1): 70-88. DOI: 10.1162/netn_a_00109.
[20]
BRAVER T S, BONGIOLATTI S R. The role of frontopolar cortex in subgoal processing during working memory[J]. Neuroimage, 2002, 15(3): 523-536. DOI: 10.1006/nimg.
[21]
HUANG W, HU W, ZHANG P, et al. Early changes in the white matter microstructure and connectome underlie cognitive deficit and depression symptoms after mild traumatic brain injury[J/OL]. Front Neurol, 2022, 13: 880902 [2023-08-23]. https://pubmed.ncbi.nlm.nih.gov/35847204/. DOI: 10.3389/fneur.2022.880902.
[22]
CATANI M. The anatomy of the human frontal lobe[J]. Handb Clin Neurol, 2019, 163: 95-122. DOI: 10.1016/B978-0-12-804281-6.00006-9.
[23]
LU L, LI F, MA Y, et al. Functional connectivity disruption of the substantia nigra associated with cognitive impairment in acute mild traumatic brain injury[J]. Eur J Radiol, 2019, 114: 69-75. DOI: 10.1016/j.ejrad.2019.03.002.
[24]
FORTIER-LEBEL O, JOBIN B, LÉCUYER-GIGUÈRE F, et al. Verbal episodic memory alterations and hippocampal atrophy in acute mild traumatic brain injury[J]. J Neurotrauma. 2021, 38(11): 1506-1514. DOI: 10.1089/neu.2020.7475.
[25]
XIONG F, LI T H, PAN Y Z, et al. Arterial spin labeling magnetic resonance evaluates changes of cerebral blood flow in patients with mild traumatic brain injury[J]. Journal of Central South University (Medical Science), 2022, 47(8): 1016-1024. DOI: 10.11817/j.issn.1672-7347.2022.210754.
[26]
KUMARI M, ARORA P, SHARMA P, et al. Acute metabolic alterations in the hippocampus are associated with decreased acetylation after blast induced TBI[J/OL]. Metabolomics. 2023, 19(1): 5 [2023-08-23]. https://pubmed.ncbi.nlm.nih.gov/36635559/. DOI: 10.1007/s11306-022-01970-z.
[27]
XU H, XU C, GU P, et al. Neuroanatomical restoration of salience network links reduced headache impact to cognitive function improvement in mild traumatic brain injury with posttraumatic headache[J/OL]. J Headache Pain, 2023, 24(1): 43 [2023-08-23]. https://pubmed.ncbi.nlm.nih.gov/37081382/. DOI: 10.1186/s10194-023-01579-0.
[28]
MAYER A R, MEIER T B, DODD A B, et al. Prospective study of gray matter atrophy following pediatric mild traumatic brain injury[J/OL]. Neurology, 2023, 100(5): e516-e527 [2023-08-23]. https://pubmed.ncbi.nlm.nih.gov/36522161/. DOI: 10.1212/WNL.0000000000201470.
[29]
LI F, LU L, SHANG S, et al. Cerebral blood flow and its connectivity deficits in mild traumatic brain injury at the acute stage[J/OL]. Neural Plast, 2020, 2020: 2174371 [2023-08-23]. https://pubmed.ncbi.nlm.nih.gov/32684919/. DOI: 10.1155/2020/2174371.
[30]
MA J, HONG G, HA E, et al. Hippocampal cerebral blood flow increased following low-pressure hyperbaric oxygenation in firefighters with mild traumatic brain injury and emotional distress[J]. Neurol Sci, 2021, 42(10): 4131-4138. DOI: 10.1007/s10072-021-05094-5.
[31]
PAPADAKI E, KAVROULAKIS E, MANOLITSI K, et al. Cerebral perfusion disturbances in chronic mild traumatic brain injury correlate with psychoemotional outcomes[J]. Brain Imaging Behav, 2021, 15(3): 1438-1449. DOI: 10.1007/s11682-020-00343-1.
[32]
HAYES J P, LOGUE M W, SADEH N, et al. Mild traumatic brain injury is associated with reduced cortical thickness in those at risk for Alzheimer's disease[J]. Brain, 2017, 140(3): 813-825. DOI: 10.1093/brain/aww344.
[33]
CHENG C P, CHENG S T, Tam C W, et al. Relationship between cortical thickness and neuropsychological performance in normal older adults and those with mild cognitive impairment[J]. Aging Dis, 2018, 9(6): 1020-1030. DOI: 10.14336/AD.2018.0125.
[34]
LI M J, HUANG S H, HUANG C X, et al. Morphometric changes in the cortex following acute mild traumatic brain injury[J]. Neural Regen Res, 2022, 17(3): 587-593. DOI: 10.4103/1673-5374.320995.
[35]
LIU Y, LI F, SHANG S, et al. Functional-structural large-scale brain networks are correlated with neurocognitive impairment in acute mild traumatic brain injury[J]. Quant Imaging Med Surg, 2023, 13(2): 631-644. DOI: 10.21037/qims-22-450.
[36]
VEKSLER R, VAZANA U, SERLIN Y, et al. Slow blood-to-brain transport underlies enduring barrier dysfunction in American football players[J]. Brain, 2020, 143(6): 1826-1842. DOI: 10.1093/brain/awaa140.
[37]
DENNIS E L, NEWSOME M R, LINDSEY H M, et al. Altered lateralization of the cingulum in deployment-related traumatic brain injury: An ENIGMA military-relevant brain injury study[J]. Hum Brain Mapp, 2023, 44(5): 1888-1900. DOI: 10.1002/hbm.26179.
[38]
MIJALKOV M, VERÉB D, JAMIALAHMADI O, et al. Sex differences in multilayer functional network topology over the course of aging in 37543 UK Biobank participants[J]. Netw Neurosci, 2023, 7(1): 351-376. DOI: 10.1162/netn_a_00286.

PREV The value of multi-sequence MRI-based radiomics in differential diagnosis of meningioma
NEXT Diagnostic value of quantitative measurement of orbital structure by 3 T MRI in staging of Graves ophthalmopathy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn