Share:
Share this content in WeChat
X
Clinical Article
Value of quantitative parameters of DCE-MRI combined with reduced field-of-view diffusion-weighted magnetic resonance imaging in differentiating benign and malignant thyroid nodules
HUANG Yanan  ZU Hanyu  HAN Huiting  WANG Yutang  HUANG Junlin  JIANG Xingyue 

Cite this article as HUANG Y N, ZU H Y, HAN H T, et al. Value of quantitative parameters of DCE-MRI combined with reduced field-of-view diffusion-weighted magnetic resonance imaging in differentiating benign and malignant thyroid nodules[J]. Chin J Magn Reson Imaging, 2024, 15(5): 80-86. DOI:10.12015/issn.1674-8034.2024.05.014.


[Abstract] Objective To explore the value of dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) quantitative parameters combined with reduced field-of-view diffusion-weighted magnetic resonance imaging in the differentiation between benign and malignant thyroid nodules.Materials and Methods From January 2022 to October 2023, a total of 38 thyroid nodule patients (52 nodules) were collected, which were diagnosed by surgery and pathology in the Affiliated Hospital of Binzhou Medical College. They were divided into benign nodule group and malignant nodule group. Before operation, all patients underwent 3.0 T MRI scanning, including conventional MRI, reduced field-of-view diffusion-weighted magnetic resonance imaging (b value was 0, 800 s/mm2) and DCE-MRI examination, and their apparent diffusion coefficient (ADC) value and quantitative parameters of DCE-MRI were measured, including contrast blood plasma and extravascular extracellular space (Ktrans), rate constant between extravascular extracellular space and blood plasma (Kep) and Volume of extravascular extracellular space per unit volume of tissue (Ve). The ADC, Kep, Ve and Ktrans of thyroid benign and malignant nodules were analyzed by independent sample t test, and the difference was statistically significant (P<0.05). Then, stepwise logistic regression model was used to analyze the independent predictors of benign and malignant nodules. And draw receiver operating characteristic (ROC) curve to analyze the diagnostic efficiency of ADC, Kep and Ktrans independent diagnosis model and joint ADC and Ktrans diagnosis model.Results The average ADC value, Ktrans value,Kep value in benign nodules group were (1.659±0.370)×10-3 mm2/s, (0.427±0.214) min-1, (0.966±0.225) min-1, respectively. While the average ADC value, Ktrans value, Kep value in malignant nodules group were (1.182±0.195)×10-3 mm2/s, ( 0.178±0.073) min-1, (0.600±0.248) min-1, respectively. The value of ADC, Kep and Ktrans in benign nodules group were higher than those in malignant nodule group, and the differences were statistically significant (P<0.001). The independent sample t test and stepwise logistic regression analysis showed that there had a difference between ADC value and Ktrans value (P<0.05). And they were independent predictors for differentiating benign from malignant thyroid nodules. The area under the curve (AUC) of ADC alone was 0.915, and the AUC of Ktrans alone was 0.827. The AUC of the combined model of ADC value and Ktrans was 0.973, which was significantly higher than that of the single application of ADC value and Ktrans, and the diagnostic efficiency of the combined diagnosis model was the highest. According to the DeLong test, there was statistical difference between the combined diagnosis model and Ktrans diagnosis alone (P<0.05). The combined diagnostic model of ADC value and Ktrans had a sensitivity of 97.3%, which was higher than ADC and Ktrans, and a specificity of 84.6%, which was higher than ADC value.Conclusions ADC value and Ktrans are important parameters for differentiating benign and malignant nodules. The combined model of ADC value and Ktrans can assist clinical practice and provide an important basis for preoperative diagnosis.
[Keywords] benign and malignant thyroid nodules;differential diagnosis;logistic regression;reduced field-of-view diffusion-weighted magnetic resonance imaging;quantitative parameters;magnetic resonance imaging

HUANG Yanan   ZU Hanyu   HAN Huiting   WANG Yutang   HUANG Junlin   JIANG Xingyue*  

Department of Radiology, Affiliated Hospital of Binzhou Medical College, Binzhou 256603, China

Corresponding author: JIANG X Y, E-mail: xyjiang188@sina.com

Conflicts of interest   None.

Received  2023-12-25
Accepted  2024-04-08
DOI: 10.12015/issn.1674-8034.2024.05.014
Cite this article as HUANG Y N, ZU H Y, HAN H T, et al. Value of quantitative parameters of DCE-MRI combined with reduced field-of-view diffusion-weighted magnetic resonance imaging in differentiating benign and malignant thyroid nodules[J]. Chin J Magn Reson Imaging, 2024, 15(5): 80-86. DOI:10.12015/issn.1674-8034.2024.05.014.

[1]
LEE J Y, BAEK J H, HA E J, et al. 2020 imaging guidelines for thyroid nodules and differentiated thyroid cancer: Korean society of thyroid radiology[J]. Korean J Radiol, 2021, 22(5): 840-860. DOI: 10.3348/kjr.2020.0578.
[2]
ZHU X, WANG J, WANG Y C, et al. Quantitative differentiation of malignant and benign thyroid nodules with multi-parameter diffusion-weighted imaging[J]. World J Clin Cases, 2022, 10(24): 8587-8598. DOI: 10.12998/wjcc.v10.i24.8587.
[3]
LI Y Z, TENG D, BA J M, et al. Efficacy and safety of long-term universal salt iodization on thyroid disorders: epidemiological evidence from 31 provinces in mainland of China[J]. Thyroid, 2020, 30(4): 568-579. DOI: 10.1089/thy.2019.0067.
[4]
XU J, LAU P, MA Y, et al. Prevalence and associated factors of thyroid nodules among 52, 003 Chinese 'healthy' individuals in Beijing: a retrospective cross-sectional study[J/OL]. Risk Manag Healthc Policy, 2024, 17: 181-189 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/38250219/. DOI: 10.2147/RMHP.S442062.
[5]
WU M N, LIANG L F, ZHANG M R, et al. Value of multi-parameter MRI in the diagnosis of thyroid benign and malignant nodules[J]. Chin J Radiol, 2021, 55(7): 710-715. DOI: 10.3760/cma.j.cn112149-20200822-01022.
[6]
ZHENG T T, WANG L Y, WANG H, et al. Prediction model based on MRI morphological features for distinguishing benign and malignant thyroid nodules[J/OL]. BMC Cancer, 2024, 24(1): 256 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/38395783/. DOI: 10.1186/s12885-024-11995-3.
[7]
HE P, YANG Q, LUO H H, et al. Value of radiomics model based on T1WI, T2WI and enhanced T1WI in differentiating benign and malignant thyroid nodules[J]. J China Clin Med Imag, 2023, 34(12): 871-877. DOI: 10.12117∕jccmi.2023.12.008.
[8]
TOFTS P S, BRIX G, BUCKLEY D L, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols[J]. J Magn Reson Imaging, 1999, 10(3): 223-232. DOI: 10.1002/(sici)1522-2586(199909)10:3<223:aid-jmri2>3.0.co;2-s.
[9]
SONG M H, YUE Y L, GUO J S, et al. Quantitative analyses of the correlation between dynamic contrast-enhanced MRI and intravoxel incoherent motion DWI in thyroid nodules[J]. Am J Transl Res, 2020, 12(7): 3984-3992.
[10]
TAO Q, LÜ Y F, XU H, et al. The role of quantitative and qualitative DCE-MRI in distinguishing benign and malignant of thyroids nodules[J]. Chin Comput Med Imag, 2022, 28(1): 38-43. DOI: 10.19627/j.cnki.cn31-1700/th.2022.01.002.
[11]
ZHONG R J, ZOU Y J, ZHENG X L, et al. Value of 3T DCE-MRI quantitative analysis in the differentiation between benign nodes and papillary carcinomas of thyroid[J]. J Guangdong Med Univ, 2021, 39(5): 608-611. DOI: 10.3969/j.issn.1005-4057.2021.05.018.
[12]
SAKAT M S, SADE R, KILIC K, et al. The use of dynamic contrast-enhanced perfusion MRI in differentiating benign and malignant thyroid nodules[J]. Indian J Otolaryngol Head Neck Surg, 2019, 71(Suppl 1): 706-711. DOI: 10.1007/s12070-018-1512-3.
[13]
PAUDYAL R, LU Y, HATZOGLOU V, et al. Dynamic contrast-enhanced MRI model selection for predicting tumor aggressiveness in papillary thyroid cancers[J/OL]. NMR Biomed, 2020, 33(1): e4166 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/31680360/. DOI: 10.1002/nbm.4166.
[14]
HE J B. Value of diffusion-weighted magnetic resonance imaging in the diagnosis of thyroid nodules[J]. J Imag Res Med Appl, 2019, 3(23): 81-82.
[15]
REN S, LIU C H, BAI R J. Value of diffusion weighted imaging in diagnosis of nodular lesions of thyroid: a preliminary study[J]. Natl Med J China, 2010, 90(47): 3351-3354. DOI: 10.3760/cma.j.issn.0376-2491.2010.47.011.
[16]
WANG X, CHEN Y R, ZHANG G L, et al. Clinical value of diffusion-weighted magnetic resonance imaging in evaluating malignant grade of papillary thyroid carcinoma[J]. J Jiangsu Univ Med Ed, 2018, 28(1): 86-88. DOI: 10.13312/j.issn.1671-7783.y170212.
[17]
ZHOU Q Q, ZHANG W, YU Y S, et al. Comparative study between ZOOMit and conventional intravoxel incoherent motion MRI for assessing parotid gland abnormalities in patients with early- or mid-stage sjögren's syndrome[J]. Korean J Radiol, 2022, 23(4): 455-465. DOI: 10.3348/kjr.2021.0695.
[18]
MA S, XU K J, XIE H H, et al. Diagnostic efficacy of b value (2000 s/mm2) diffusion-weighted imaging for prostate cancer: comparison of a reduced field of view sequence and a conventional technique[J/OL]. Eur J Radiol, 2018, 107: 125-133 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/30292256/. DOI: 10.1016/j.ejrad.2018.08.028.
[19]
HE Z Z, ZHOU Q Q, YU Y S, et al. Evaluation of thyroid gland image quality by conventional and ZOOMit DWI[J]. Chin Comput Med Imag, 2020, 26(4): 324-328. DOI: 10.19627/j.cnki.cn31-1700/th.2020.04.006.
[20]
LIU B. The diagnostic performance of reduced field-of-view multi-b diffusion-weighted imaging in thyroid and parathyroid lesions[D]. Jinan: Shandong University, 2020. DOI: 10.27272/d.cnki.gshdu.2020.004738.
[21]
YUAN Y, YUE X H, TAO X F. The diagnostic value of dynamic contrast-enhanced MRI for thyroid tumors[J]. Eur J Radiol, 2012, 81(11): 3313-3318. DOI: 10.1016/j.ejrad.2012.04.029.
[22]
TUNCA F, GILES Y, SALMASLIOGLU A, et al. The preoperative exclusion of thyroid carcinoma in multinodular goiter: dynamic contrast-enhanced magnetic resonance imaging versus ultrasonography-guided fine-needle aspiration biopsy[J]. Surgery, 2007, 142(6): 992-1002. DOI: 10.1016/j.surg.2007.09.027.
[23]
TEZELMAN S, GILES Y, TUNCA F, et al. Diagnostic value of dynamic contrast medium enhanced magnetic resonance imaging in preoperative detection of thyroid carcinoma[J]. Arch Surg, 2007, 142(11): 1036-1041. DOI: 10.1001/archsurg.142.11.1036.
[24]
BEN-DAVID E, SADEGHI N, REZAEI M K, et al. Semiquantitative and quantitative analyses of dynamic contrast-enhanced magnetic resonance imaging of thyroid nodules[J]. J Comput Assist Tomogr, 2015, 39(6): 855-859. DOI: 10.1097/RCT.0000000000000304.
[25]
XIAN J F. Improve the value of quantitative MRI in the diagnosis and treatment of head and neck diseases[J]. Chin J Magn Reson Imag, 2022, 13(11): 1-5. DOI: 10.12015/issn.1674-8034.2022.11.001.
[26]
WEI C, JIN B W, SZEWCZYK-BIEDA M, et al. Quantitative parameters in dynamic contrast-enhanced magnetic resonance imaging for the detection and characterization of prostate cancer[J]. Oncotarget, 2018, 9(22): 15997-16007. DOI: 10.18632/oncotarget.24652.
[27]
SU Z F, LI Y G. The value of quantitative dynamic contrast enhanced MRI in the diagnosis of thyroid lesions[J]. Chin J Magn Reson Imag, 2020, 11(11): 1029-1031. DOI: 10.12015/issn.1674-8034.2020.11.014.
[28]
SHEN F U, LU J P, CHEN L G, et al. Diagnostic value of dynamic contrast-enhanced magnetic resonance imaging in rectal cancer and its correlation with tumor differentiation[J]. Mol Clin Oncol, 2016, 4(4): 500-506. DOI: 10.3892/mco.2016.762.
[29]
SONG J, GU Y, DU T T, et al. Analysis of quantitative and semi-quantitative parameters of DCE-MRI in differential diagnosis of benign and malignant cervical tumors[J]. Am J Transl Res, 2021, 13(11): 12228-12234.
[30]
LIU J. Value of magnetic resonance imaging and diffusionweighted images for differentiating benign and malignant thyroid nodules[D]. Wuhan: Huazhong University of Science and Technology, 2013. DOI: 10.7666/d.D409738.
[31]
ZHENG T T, XIE X L, NI Z X, et al. Quantitative evaluation of diffusion-weighted MRI for differentiating benign and malignant thyroid nodules larger than 4 cm[J/OL]. BMC Med Imaging, 2023, 23(1): 212 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/38093189/. DOI: 10.1186/s12880-023-01141-z.
[32]
WANG H, WEI R, LIU W Y, et al. Diagnostic efficacy of multiple MRI parameters in differentiating benign vs. malignant thyroid nodules[J/OL]. BMC Med Imaging, 2018, 18(1): 50 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/30509198/. DOI: 10.1186/s12880-018-0294-0.
[33]
LU Y, CHEN Y R, HU S D, et al. Utility of different b-values diffusion-weighted MR imaging in differentiating malignant from benign thyroid nodules[J]. J Jiangsu Univ Med Ed, 2017, 27(3): 257-260. DOI: 10.13312/j.issn.1671-7783.y170082.
[34]
BARON P, WIELEMA M, DIJKSTRA H, et al. Comparison of conventional and higher-resolution reduced-FOV diffusion-weighted imaging of breast tissue[J]. Magn Reson Mater Phys Biol Med, 2023, 36(4): 613-619. DOI: 10.1007/s10334-022-01055-x.
[35]
HE Y K, WANG M, YI S Q, et al. Diffusion-weighted imaging in the assessment of cervical cancer: comparison of reduced field-of-view diffusion-weighted imaging and conventional techniques[J]. Acta Radiol, 2023, 64(8): 2485-2491. DOI: 10.1177/02841851231183870.
[36]
MAO L J, ZHANG X L, CHEN T T, et al. High-resolution reduced field-of-view diffusion-weighted magnetic resonance imaging in the diagnosis of cervical cancer[J]. Quant Imaging Med Surg, 2023, 13(6): 3464-3476. DOI: 10.21037/qims-22-579.
[37]
YUAN L T, ZHAO P, LIN X T, et al. T1 mapping and reduced field-of-view DWI at 3.0 T MRI for differentiation of thyroid papillary carcinoma from nodular goiter[J]. Clin Physiol Funct Imaging, 2023, 43(3): 137-145. DOI: 10.1111/cpf.12803.
[38]
WANG Y F, REN Y, ZHU C F, et al. Optimising diffusion-weighted imaging of the thyroid gland using dedicated surface coil[J/OL]. Clin Radiol, 2022, 77(11): e791-e798 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/36096939/. DOI: 10.1016/j.crad.2022.07.011.
[39]
LU Y G, HATZOGLOU V, BANERJEE S, et al. Repeatability investigation of reduced field-of-view diffusion-weighted magnetic resonance imaging on thyroid glands[J]. J Comput Assist Tomogr, 2015, 39(3): 334-339. DOI: 10.1097/RCT.0000000000000227.
[40]
SUN K, CHEN X S, CHAI W M, et al. Breast cancer: diffusion kurtosis MR imaging-diagnostic accuracy and correlation with clinical-pathologic factors[J]. Radiology, 2015, 277(1): 46-55. DOI: 10.1148/radiol.15141625.
[41]
IIMA M, YANO K, KATAOKA M, et al. Quantitative non-Gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging: differentiation of malignant and benign breast lesions[J]. Invest Radiol, 2015, 50(4): 205-211. DOI: 10.1097/RLI.0000000000000094.

PREV Preliminary study on MRI features of the lower lip salivary glands in Sjögren,s syndrome
NEXT Value of cardiac magnetic resonance feature tracking technique in evaluating cardiac function during chemotherapy in breast cancer patients
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn