Share:
Share this content in WeChat
X
Clinical Article
Value of cardiac magnetic resonance feature tracking technique in evaluating cardiac function during chemotherapy in breast cancer patients
XU Shufei  WANG Zhixue  ZHAO Sen  YIN Xiaoxiang  ZHUANG Yan  GUO Shuaikang  YAN Manke  YANG Wenru  CHEN Jie  SHEN Xiaoshun 

Cite this article as XU S F, WANG Z X, ZHAO S, et al. Value of cardiac magnetic resonance feature tracking technique in evaluating cardiac function during chemotherapy in breast cancer patients[J]. Chin J Magn Reson Imaging, 2024, 15(5): 87-93. DOI:10.12015/issn.1674-8034.2024.05.015.


[Abstract] Objective To investigate the value of cardiac magnetic resonance feature tracking (CMR-FT) in evaluating early subclinical changes in cardiac function during chemotherapy in breast cancer patient.Materials and Methods This was a prospective study, in which 73 breast cancer patients were enrolled. All subjects underwent a once-time 1.5 T cardiac magnetic resonance examination with a scan sequence heart cinema. According to different chemotherapy cycles, breast cancer patients were divided into three groups, i.e., baseline group (no chemotherapy yet; n=20), early chemotherapy group (3-4 cycles; n=27), and late chemotherapy group (7-8 cycles; n=26). Conventional cardiac function parameters and myocardial strain parameter including left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume index (LVEDVI), global radial strain (GRS), global longitudinal strain (GLS), and global circumferential strain (GCS) were obtained using CVI42 post-processing software. Normality tests were performed, moreover, a one-way analysis of variance was to compare intergroup differences. Pearson correlation coefficient was utilized to analyze the relationship between cardiac function and myocardial strain data, with statistical significance set at P<0.05.Results When compared to the baseline group, a pronounced decrease was detected in the cardiac function indexes of LVEF, right ventricular ejection fraction (RVEF), and stroke volume index (SVI) in the late chemotherapy group (all P<0.05), while the main myocardial strain indexes GRS, GCS, and GLS in the early chemotherapy group (all P<0.05). Correlation analysis revealed a linear positive correlation between LVEF, RVEF, SVI and GRS, GCS, GLS respectively (r=0.26-0.45, all P<0.05). LVMI, LVEDVI, LVESVI, and cardiac index (CI) showed no significant correlation with myocardial strain data (all P>0.05). Repeatability analysis indicated good inter- and intra-observer agreement for GRS, GCS, and GLS measurements.Conclusions Compared to conventional cardiac function indexes, the cardiac strain index measured by CMR-FT technology is more sensitive in detecting subclinical cardiac function injury in breast cancer patients, providing an opportunity for early prevention and treatment of severe cardiac damage.
[Keywords] breast cancer;chemotherapy;cardiotoxicity;myocardial strain;cardiac magnetic resonance;magnetic resonance imaging

XU Shufei   WANG Zhixue*   ZHAO Sen   YIN Xiaoxiang   ZHUANG Yan   GUO Shuaikang   YAN Manke   YANG Wenru   CHEN Jie   SHEN Xiaoshun  

Department of Radiology, the First Affiliated Hospital of Henan University, Kaifeng 475000, China

Corresponding author: WANG Z X, E-mail: wangzhlxue917@126.com

Conflicts of interest   None.

Received  2024-01-03
Accepted  2024-04-17
DOI: 10.12015/issn.1674-8034.2024.05.015
Cite this article as XU S F, WANG Z X, ZHAO S, et al. Value of cardiac magnetic resonance feature tracking technique in evaluating cardiac function during chemotherapy in breast cancer patients[J]. Chin J Magn Reson Imaging, 2024, 15(5): 87-93. DOI:10.12015/issn.1674-8034.2024.05.015.

[1]
SIEGEL RL, GIAQUINTO AN, Jemal JEMAL A.. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74 (1): 12-49. DOI: 10.3322/caac.21820.
[2]
BRAY F, LAVERSANNE M, WEIDERPASS E, et al. The ever-increasing importance of cancer as a leading cause of premature death worldwide[J]. Cancer, 2021, 127(16): 3029-3030. DOI: 10.1002/cncr.33587.
[3]
RABBAT M G, KWONG R Y, HEITNER J F, et al. The future of cardiac magnetic resonance clinical trials[J]. JACC Cardiovasc Imaging, 2022, 15(12): 2127-2138. DOI: 10.1016/j.jcmg.2021.07.029.
[4]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[5]
JAFARI F, SAFAEI A M, HOSSEINI L, et al. The role of cardiac magnetic resonance imaging in the detection and monitoring of cardiotoxicity in patients with breast cancer after treatment: a comprehensive review[J]. Heart Fail Rev, 2021, 26(3): 679-697. DOI: 10.1007/s10741-020-10028-y.
[6]
COHEN J B, BROWN N J, BROWN S A, et al. Cancer therapy-related hypertension: a scientific statement from the American heart association[J/OL]. Hypertension, 2023, 80(3): e46-e57 [2024-01-02]. https://pubmed.ncbi.nlm.nih.gov/36621810/. DOI: 10.1161/HYP.0000000000000224.
[7]
BRADSHAW P T, STEVENS J, KHANKARI N, et al. Cardiovascular disease mortality among breast cancer survivors[J]. Epidemiology, 2016, 27(1): 6-13. DOI: 10.1097/EDE.0000000000000394.
[8]
O'QUINN R, FERRARI V A, DALY R, et al. Cardiac magnetic resonance in cardio-oncology: advantages, importance of expediency, and considerations to navigate pre-authorization[J]. JACC CardioOncol, 2021, 3(2): 191-200. DOI: 10.1016/j.jaccao.2021.04.011.
[9]
HOUBOIS C P, THAVENDIRANATHAN P, WINTERSPERGER B J. Cardiovascular magnetic resonance imaging: identifying the effects of cancer therapy[J]. J Thorac Imaging, 2020, 35(1): 12-25. DOI: 10.1097/RTI.0000000000000430.
[10]
SAFAEI A M, KAMANGAR T M, ASADIAN S, et al. Detection of the early cardiotoxic effects of doxorubicin-containing chemotherapy regimens in patients with breast cancer through novel cardiac magnetic resonance imaging: a short-term follow-up[J/OL]. J Clin Imaging Sci, 2021, 11: 33 [2024-01-02]. https://pubmed.ncbi.nlm.nih.gov/34221642/. DOI: 10.25259/JCIS_58_2021.
[11]
CHHIKARA S, HOOKS M, ATHWAL P S S, et al. Long-term prognostic value of right ventricular dysfunction on cardiovascular magnetic resonance imaging in anthracycline-treated cancer survivors[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(9): 1222-1230. DOI: 10.1093/ehjci/jeab137.
[12]
WEI X T, LIN L, ZHANG G Z, et al. Cardiovascular magnetic resonance imaging in the early detection of cardiotoxicity induced by cancer therapies[J/OL]. Diagnostics, 2022, 12(8): 1846 [2024-01-02]. https://pubmed.ncbi.nlm.nih.gov/36010197/. DOI: 10.3390/diagnostics12081846.
[13]
CAU R, BASSAREO P, CHERCHI V, et al. Early diagnosis of chemotherapy-induced cardiotoxicity by cardiac MRI[J/OL]. Eur J Radiol, 2020, 130: 109158 [2024-01-02]. https://pubmed.ncbi.nlm.nih.gov/32652404/. DOI: 10.1016/j.ejrad.2020.109158.
[14]
ZAGAR T M, CARDINALE D M, MARKS L B. Breast cancer therapy-associated cardiovascular disease[J]. Nat Rev Clin Oncol, 2016, 13(3): 172-184. DOI: 10.1038/nrclinonc.2015.171.
[15]
KIM J, HONG Y J, HAN K, et al. Chemotherapy-related cardiac dysfunction: quantitative cardiac magnetic resonance image parameters and their prognostic implications[J]. Korean J Radiol, 2023, 24(9): 838-848. DOI: 10.3348/kjr.2023.0095.
[16]
XU J, YANG W J, ZHAO S H, et al. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives[J]. Eur Radiol, 2022, 32(8): 5424-5435. DOI: 10.1007/s00330-022-08629-2.
[17]
HARRIES I, LIANG K T, WILLIAMS M, et al. Magnetic resonance imaging to DetectCardiovascular effects of CancerTherapy[J]. JACC CardioOncology, 2020, 2(2): 270-292. DOI: 10.1016/j.jaccao.2020.04.011.
[18]
HUANG H, NIJJAR P S, MISIALEK J R, et al. Accuracy of left ventricular ejection fraction by contemporary multiple gated acquisition scanning in patients with cancer: comparison with cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 34 [2024-01-02]. https://pubmed.ncbi.nlm.nih.gov/28335788/. DOI: 10.1186/s12968-017-0348-4.
[19]
VALLABHANENI S, ZHANG K W, ALVAREZ-CARDONA J A, et al. Role of cardiovascular magnetic resonance in early detection and treatment of cardiac dysfunction in oncology patients[J]. Int J Cardiovasc Imaging, 2021, 37(10): 3003-3017. DOI: 10.1007/s10554-021-02271-7.
[20]
ERLEY J, GENOVESE D, TAPASKAR N, et al. Echocardiography and cardiovascular magnetic resonance based evaluation of myocardial strain and relationship with late gadolinium enhancement[J/OL]. J Cardiovasc Magn Reson, 2019, 21(1): 46 [2024-01-02]. https://pubmed.ncbi.nlm.nih.gov/31391036/. DOI: 10.1186/s12968-019-0559-y.
[21]
FERREIRA DE SOUZA T, QUINAGLIA A C SILVA T, OSORIO COSTA F, et al. Anthracycline therapy is associated with cardiomyocyte atrophy and preclinical manifestations of heart disease[J]. JACC Cardiovasc Imaging, 2018, 11(8): 1045-1055. DOI: 10.1016/j.jcmg.2018.05.012.
[22]
NEILAN T G, COELHO-FILHO O R, SHAH R V, et al. Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy[J]. Am J Cardiol, 2013, 111(5): 717-722. DOI: 10.1016/j.amjcard.2012.11.022.
[23]
JORDAN J H, VASU S, MORGAN T M, et al. Anthracycline- associated T1 mapping characteristics are elevated independent of the presence of cardiovascular comorbidities in cancer survivors[J/OL]. Circ Cardiovasc Imaging, 2016, 9(8): e004325 [2024-01-02]. https://pubmed.ncbi.nlm.nih.gov/27502058/ DOI: 10.1161/CIRCIMAGING.115.004325.
[24]
HOUBOIS C P, NOLAN M, SOMERSET E, et al. Serial cardiovascular magnetic resonance strain measurements to identify cardiotoxicity in breast cancer: comparison with echocardiography[J]. JACC Cardiovasc Imaging, 2021, 14(5): 962-974. DOI: 10.1016/j.jcmg.2020.09.039.
[25]
TORO-SALAZAR O H, GILLAN E, O'LOUGHLIN M T, et al. Occult cardiotoxicity in childhood cancer survivors exposed to anthracycline therapy[J]. Circ Cardiovasc Imaging, 2013, 6(6): 873-880. DOI: 10.1161/CIRCIMAGING.113.000798.
[26]
KRAMER C M, BARKHAUSEN J, BUCCIARELLI-DUCCI C, et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 17 [2024-01-02]. https://pubmed.ncbi.nlm.nih.gov/32089132/. DOI: 10.1186/s12968-020-00607-1.
[27]
PARK H S, HONG Y J, HAN K, et al. Ultrahigh-field cardiovascular magnetic resonance T1 and T2 mapping for the assessment of anthracycline-induced cardiotoxicity in rat models: validation against histopathologic changes[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 76 [2024-01-02]. https://pubmed.ncbi.nlm.nih.gov/34134713/. DOI: 10.1186/s12968-021-00767-8.
[28]
VON HOFF D D, LAYARD M W, BASA P, et al. Risk factors for doxorubicin-induced congestive heart failure[J]. Ann Intern Med, 1979, 91(5): 710-717. DOI: 10.7326/0003-4819-91-5-710.
[29]
EWER M S, LIPPMAN S M. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity[J]. J Clin Oncol, 2005, 23(13): 2900-2902. DOI: 10.1200/JCO.2005.05.827.
[30]
AVILA M S, SIQUEIRA S R R, FERREIRA S M A, et al. Prevention and treatment of chemotherapy-induced cardiotoxicity[J]. Methodist Debakey Cardiovasc J, 2019, 15(4): 267-273. DOI: 10.14797/mdcj-15-4-267.
[31]
HAMO C E, BLOOM M W, CARDINALE D, et al. Cancer therapy-related cardiac dysfunction and heart failure: part 2: prevention, treatment, guidelines, and future directions[J/OL]. Circ Heart Fail, 2016, 9(2): e002843 [2024-01-02]. https://pubmed.ncbi.nlm.nih.gov/26839395/. DOI: 10.1161/CIRCHEARTFAILURE.115.002843.
[32]
CARDINALE D, COLOMBO A, BACCHIANI G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy[J]. Circulation, 2015, 131(22): 1981-1988. DOI: 10.1161/CIRCULATIONAHA.114.013777.
[33]
AVELAR E, TRUONG Q A, INYANGETOR D, et al. Effect of adjuvant chemotherapy on left ventricular remodeling in women with newly diagnosed primary breast cancer: a pilot prospective longitudinal cardiac magnetic resonance imaging study[J]. J Thorac Imaging, 2017, 32(6): 365-369. DOI: 10.1097/RTI.0000000000000285.
[34]
NAKANO S, TAKAHASHI M, KIMURA F, et al. Cardiac magnetic resonance imaging-based myocardial strain study for evaluation of cardiotoxicity in breast cancer patients treated with trastuzumab: a pilot study to evaluate the feasibility of the method[J]. Cardiol J, 2016, 23(3): 270-280. DOI: 10.5603/CJ.a2016.0023.
[35]
EWER M S, LENIHAN D J. Left ventricular ejection fraction and cardiotoxicity: is our ear really to the ground?[J]. J Clin Oncol, 2008, 26(8): 1201-1203. DOI: 10.1200/JCO.2007.14.8742.
[36]
REINDL M, TILLER C, HOLZKNECHT M, et al. Global longitudinal strain by feature tracking for optimized prediction of adverse remodeling after ST-elevation myocardial infarction[J]. Clin Res Cardiol, 2021, 110(1): 61-71. DOI: 10.1007/s00392-020-01649-2.
[37]
THAVENDIRANATHAN P, POULIN F, LIM K D, et al. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review[J]. J Am Coll Cardiol, 2014, 63(25Pt A): 2751-2768. DOI: 10.1016/j.jacc.2014.01.073.
[38]
HARRIES I, BERLOT B, FFRENCH-CONSTANT N, et al. Cardiovascular magnetic resonance characterisation of anthracycline cardiotoxicity in adults with normal left ventricular ejection fraction[J/OL]. Int J Cardiol, 2021, 343: 180-186 [2024-01-02]. https://pubmed.ncbi.nlm.nih.gov/34454967/. DOI: 10.1016/j.ijcard.2021.08.037.
[39]
PLANA J C, GALDERISI M, BARAC A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging[J]. J Am Soc Echocardiogr, 2014, 27(9): 911-939. DOI: 10.1016/j.echo.2014.07.012.
[40]
NEGISHI K, NEGISHI T, HARE J L, et al. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity[J]. J Am Soc Echocardiogr, 2013, 26(5): 493-498. DOI: 10.1016/j.echo.2013.02.008.
[41]
MOODY W E, TAYLOR R J, EDWARDS N C, et al. Comparison of magnetic resonance feature tracking for systolic and diastolic strain and strain rate calculation with spatial modulation of magnetization imaging analysis[J]. J Magn Reson Imaging, 2015, 41(4): 1000-1012. DOI: 10.1002/jmri.24623.

PREV Value of quantitative parameters of DCE-MRI combined with reduced field-of-view diffusion-weighted magnetic resonance imaging in differentiating benign and malignant thyroid nodules
NEXT 3D-MIP reconstruction and multi parameter evaluation of BI-RADS 4 breast tumors based on DCE-MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn