Share:
Share this content in WeChat
X
Clinical Article
Combining the X-ray and MRI characteristics with the clinical pathology to predict ductal carcinoma in situ with microinvasion of breast
ZHOU Xiaoping  YANG Wei  YIN Qingyun  ZHANG Ningmei  ZHANG Chaolin  LIU Kaihui  WU Linhua 

Cite this article as ZHOU X P, YANG W, YIN Q Y, et al. Combining the X-ray and MRI characteristics with the clinical pathology to predict ductal carcinoma in situ with microinvasion of breast[J]. Chin J Magn Reson Imaging, 2024, 15(5): 102-110, 118. DOI:10.12015/issn.1674-8034.2024.05.017.


[Abstract] Objective To explore the value of clinical-pathological, mammographic (MG), and MRI features in predicting ductal carcinoma in situ with microinvasion (DCISM).Materials and Methods A retrospective study was conducted on female patients diagnosed with pure ductal carcinoma in situ (DCIS) and DCISM confirmed by final surgical pathology from June 2019 to June 2022 at General Hospital of Ningxia Medical University. Clinical-pathological, MG, and MRI features of the patients were evaluated. The univariate and multivariate logistic regression analysis was used to identify independent risk factors for DCISM and develop a combined model. The diagnostic performance of the model was assessed using the area under the receiver operating characteristic (ROC) curve (AUC) and calibration plot. The clinical utility of the combined model was evaluated using decision curve analysis (DCA). A prospective validation was performed on patients who meet the eligibility criteria for inclusion and exclusion from July 2022 to July 2023. Shapley Additive exPlanation (SHAP) analysis was applied to assess the value of the combined model in predicting DCISM based on the longest diameter of the lesion, nuclear grade, necrosis, Ki-67 index, P63 status, calcification status, and minimum ADC value. A total of 535 patients with 550 lesions (15 cases were synchronous bilateral breast cancer) were collected. The patients' ages ranged from 23 to 81 years, with a median age of 50 years. Among the training group (n=382), 102 lesions (27%) were diagnosed as DCISM, while in the validation group (n=168), 52 lesions (31%) were diagnosed as DCISM.Results The multivariable logistic regression analysis showed the independent risk factors of DCISM included longest diameter of the lesion, nuclear grade, necrosis, Ki-67 index, P63 status, calcification status, and the minimum value of apparent diffusion coefficient (ADCmin). A predictive model combining the above parameters with preoperative clinical-pathological, mammography, and MRI features was constructed, demonstrating high predictive performance in both the training and validation groups (AUC: 0.937, 0.899). According to SHAP analysis, the longest diameter of the lesion, Ki-67 index, and ADCmin make the primary contributions in the combined model for predicting DCISM, while the calcification status, nuclear grade, P63 status, and necrosis are supplementary factors.Conclusions A combined predictive model using clinical-pathological, preoperative MG and MRI features can effectively differentiate DCISM from pure DCIS, thereby improving the accuracy of clinical decision-making and treatment planning.
[Keywords] breast tumor;ductal carcinoma in situ;ductal carcinoma in situ with microinvasion;interpretability;mammography;magnetic resonance imaging

ZHOU Xiaoping1   YANG Wei2*   YIN Qingyun3   ZHANG Ningmei4   ZHANG Chaolin5   LIU Kaihui1   WU Linhua2  

1 School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China

2 Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China

3 Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, China

4 Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China

5 Department of Oncology Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China

Corresponding author: YANG W, E-mail: yangwei_0521@163.com

Conflicts of interest   None.

Received  2023-08-15
Accepted  2024-04-17
DOI: 10.12015/issn.1674-8034.2024.05.017
Cite this article as ZHOU X P, YANG W, YIN Q Y, et al. Combining the X-ray and MRI characteristics with the clinical pathology to predict ductal carcinoma in situ with microinvasion of breast[J]. Chin J Magn Reson Imaging, 2024, 15(5): 102-110, 118. DOI:10.12015/issn.1674-8034.2024.05.017.

[1]
YOON G Y, CHOI W J, KIM H H, et al. Surgical outcomes for ductal carcinoma in situ: impact of preoperative MRI[J]. Radiology, 2020, 295(2): 296-303. DOI: 10.1148/radiol.2020191535.
[2]
ZHANG M, LIN Q, SU X H, et al. Comparative analysis of clinicopathological and mammographic findings between ductal carcinoma in situ with microinvasion and ductal carcinoma in situ[J]. Chin J Radiol, 2022, 56(2): 182-187. DOI: 10.3760/cma.j.cn112149-20210324-00268.
[3]
GIULIANO A E, CONNOLLY J L, EDGE S B, et al. Breast Cancer-Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual[J]. CA Cancer J Clin, 2017, 67(4): 290-303. DOI: 10.3322/caac.21393.
[4]
HOU R, GRIMM L J, MAZUROWSKI M A, et al. Prediction of upstaging in ductal carcinoma in situ based on mammographic radiomic features[J]. Radiology, 2022, 303(1): 54-62. DOI: 10.1148/radiol.210407.
[5]
LEE S A, LEE Y, RYU H S, et al. Diffusion-weighted breast MRI in prediction of upstaging in women with biopsy-proven ductal carcinoma in situ[J/OL]. Radiology, 2022, 305(1): E60 [2023-08-14]. https://pubmed.ncbi.nlm.nih.gov/36154288/. DOI: 10.1148/radiol.229018.
[6]
CHOI S H, CHOI J S, HAN B K, et al. Long-term surveillance of ductal carcinoma in situ detected with screening mammography versus US: factors associated with second breast cancer[J]. Radiology, 2019, 292(1): 37-48. DOI: 10.1148/radiol.2019181844.
[7]
ROCHLIN D H, BARRIO A V, MCLAUGHLIN S, et al. Feasibility and clinical utility of prediction models for breast cancer-related lymphedema incorporating racial differences in disease incidence[J]. JAMA Surg, 2023, 158(9): 954-964. DOI: 10.1001/jamasurg.2023.2414.
[8]
CHE BAKRI N A, KWASNICKI R M, KHAN N, et al. Impact of axillary lymph node dissection and sentinel lymph node biopsy on upper limb morbidity in breast cancer patients: a systematic review and meta-analysis[J]. Ann Surg, 2023, 277(4): 572-580. DOI: 10.1097/SLA.0000000000005671.
[9]
LI Y X, WANG Y X, CHENG L Q, et al. A retrospective comparison of MRI, ultrasound and X-ray mammography in detecting breast ductal carcinoma in situ[J]. Chin J Radiol, 2020, 54(6): 557-562. DOI: 10.3760/cma.j.cn112149-20200416-00564.
[10]
KEYMEULEN K B I M, GEURTS S M E, KOOREMAN L F S, et al. Clinical value of contralateral breast cancers detected by pre-operative MRI in patients diagnosed with DCIS: a population-based cohort study[J]. Eur Radiol, 2023, 33(3): 2209-2217. DOI: 10.1007/s00330-022-09115-5.
[11]
LEE K H, HAN J W, KIM E Y, et al. Predictive factors for the presence of invasive components in patients diagnosed with ductal carcinoma in situ based on preoperative biopsy[J/OL]. BMC Cancer, 2019, 19(1): 1201 [2023-08-14]. https://pubmed.ncbi.nlm.nih.gov/31822268/. DOI: 10.1186/s12885-019-6417-3.
[12]
YOON G Y, CHOI W J, CHA J H, et al. The role of MRI and clinicopathologic features in predicting the invasive component of biopsy-confirmed ductal carcinoma in situ[J/OL]. BMC Med Imaging, 2020, 20(1): 95 [2023-08-14]. https://pubmed.ncbi.nlm.nih.gov/32787871/. DOI: 10.1186/s12880-020-00494-z.
[13]
CHOU S S, ROMANOFF J, LEHMAN C D, et al. Preoperative breast MRI for newly diagnosed ductal carcinoma in situ: imaging features and performance in a multicenter setting (ECOG-ACRIN E4112 trial)[J/OL]. Radiology, 2021, 301(1): E381 [2023-08-14]. https://pubmed.ncbi.nlm.nih.gov/34543146/. DOI: 10.1148/radiol.2021219016.
[14]
CHEN H, LI X, LI F L, et al. Prediction of coexisting invasive carcinoma on ductal carcinoma in situ (DCIS) lesions by mass spectrometry imaging[J]. J Pathol, 2023, 261(2): 125-138. DOI: 10.1002/path.6154.
[15]
WANG W Q, YANG W, LIU K H, et al. Combination of mammography, MRI and pathology for diagnosis of molecular subtypes of breast cancer[J]. Chin J Med Imag Technol, 2023, 39(2): 210-215. DOI: 10.13929/j.issn.1003-3289.2023.02.013.
[16]
MA M W, LIU R Y, WEN C J, et al. Predicting the molecular subtype of breast cancer and identifying interpretable imaging features using machine learning algorithms[J]. Eur Radiol, 2022, 32(3): 1652-1662. DOI: 10.1007/s00330-021-08271-4.
[17]
JIN Z, ZHANG B, ZHANG L, et al. Prediction of distant metastasis in nasopharyngeal carcinoma by interpretable machine learning model based on multiparametric MRI radiomics and clinical factors[J]. Chin J Magn Reson Imag, 2022, 13(11): 22-29. DOI: 10.12015/issn.1674-8034.2022.11.005.
[18]
SPAK D A, PLAXCO J S, SANTIAGO L, et al. BI-RADS® fifth edition: a summary of changes[J]. Diagn Interv Imaging, 2017, 98(3): 179-190. DOI: 10.1016/j.diii.2017.01.001.
[19]
VAN DER HOOGT K J J, SCHIPPER R J, WESSELS R, et al. Breast DWI analyzed before and after gadolinium contrast administration-an intrapatient analysis on 1.5 T and 3.0 T[J]. Invest Radiol, 2023, 58(12): 832-841. DOI: 10.1097/RLI.0000000000000999.
[20]
KIM J J, KIM J Y, SUH H B, et al. Characterization of breast cancer subtypes based on quantitative assessment of intratumoral heterogeneity using dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging[J]. Eur Radiol, 2022, 32(2): 822-833. DOI: 10.1007/s00330-021-08166-4.
[21]
LI Y B, CHEN Y Z, ZHAO R, et al. Development and validation of a nomogram based on pretreatment dynamic contrast-enhanced MRI for the prediction of pathologic response after neoadjuvant chemotherapy for triple-negative breast cancer[J]. Eur Radiol, 2022, 32(3): 1676-1687. DOI: 10.1007/s00330-021-08291-0.
[22]
WANG L J, CHANG L F, LUO R, et al. An artificial intelligence system using maximum intensity projection MR images facilitates classification of non-mass enhancement breast lesions[J]. Eur Radiol, 2022, 32(7): 4857-4867. DOI: 10.1007/s00330-022-08553-5.
[23]
LUNKIEWICZ M, FORTE S, FREIWALD B, et al. Interobserver variability and likelihood of malignancy for fifth edition BI-RADS MRI descriptors in non-mass breast lesions[J]. Eur Radiol, 2020, 30(1): 77-86. DOI: 10.1007/s00330-019-06312-7.
[24]
WANG Y Z, YIN Y M, JIANG Z F. Interpretation of updated key points of Chinese society of clinical oncology (CSCO) breast cancer guidelines 2023[J]. Chin J Surg Oncol, 2023, 15(3): 209-213, 218. DOI: 10.3969/j.issn.1674-4136.2023.03.001.
[25]
LANDIS J R, KOCH G G. The measurement of observer agreement for categorical data[J]. Biometrics, 1977, 33(1): 159-174.
[26]
LI L, OUYANG R S, LIN X H, et al. A study on the prediction of prognosis of ductal carcinoma in situ at different pathological stages based on deep learning mammography combined with natural language processing[J]. Chin J Radiol, 2022, 56(11): 1215-1222. DOI: 10.3760/cma.j.cn112149-20220321-00258.
[27]
PARK K W, KIM S W, HAN H, et al. Ductal carcinoma in situ: a risk prediction model for the underestimation of invasive breast cancer[J/OL]. NPJ Breast Cancer, 2022, 8(1): 8 [2023-08-14]. https://pubmed.ncbi.nlm.nih.gov/35031626/. DOI: 10.1038/s41523-021-00364-z.
[28]
KIM M, KIM H J, CHUNG Y R, et al. Microinvasive carcinoma versus ductal carcinoma In situ: a comparison of clinicopathological features and clinical outcomes[J]. J Breast Cancer, 2018, 21(2): 197-205. DOI: 10.4048/jbc.2018.21.2.197.
[29]
LI J, SONG Y, XU S Y, et al. Predicting underestimation of ductal carcinoma in situ: a comparison between radiomics and conventional approaches[J]. Int J Comput Assist Radiol Surg, 2019, 14(4): 709-721. DOI: 10.1007/s11548-018-1900-x.
[30]
YOON G Y, CHOI W J, KIM H H, et al. Outcomes and imaging features of microinvasive carcinoma and ductal carcinoma in situ: matched cohort study[J/OL]. Clin Imaging, 2023, 96: 64-70 [2023-08-14]. https://pubmed.ncbi.nlm.nih.gov/36827842/. DOI: 10.1016/j.clinimag.2023.01.004.
[31]
TAN F Y, LIU M, CHENG L Q, et al. Imaging-pathological correlation of clustered ring sign on breast MRI[J]. Chin J Med Imag, 2020, 28(8): 596-601. DOI: 10.3969/j.issn.1005-5185.2020.08.010.
[32]
ZHAO S H, SHAO G R, CHEN P P, et al. Diagnostic performance of minimum apparent diffusion coefficient value in differentiating the invasive breast cancer and ductal carcinoma in situ[J]. J Cancer Res Ther, 2019, 15(4): 871-875. DOI: 10.4103/jcrt.JCRT_607_18.
[33]
SHAABAN A M, HILTON B, CLEMENTS K, et al. The presentation, management and outcome of patients with ductal carcinoma in situ (DCIS) with microinvasion (invasion ≤1 mm in size)-results from the UK Sloane Project[J]. Br J Cancer, 2022, 127(12): 2125-2132. DOI: 10.1038/s41416-022-01983-4.
[34]
LEE S Y, YOO T K, KIM J, et al. Clinical significance of microinvasive breast cancer across the different subtypes and human epidermal growth factor receptor 2 expression levels[J]. Breast Cancer Res Treat, 2023, 200(1): 47-61. DOI: 10.1007/s10549-023-06955-7.
[35]
ZHAO M R, MA W J, SONG X C, et al. Feasibility analysis of magnetic resonance imaging-based radiomics features for preoperative prediction of nuclear grading of ductal carcinoma in situ[J]. Gland Surg, 2023, 12(9): 1209-1223. DOI: 10.21037/gs-23-132.
[36]
JIA H Q, ZHAO P, CHEN Z X, et al. Clinicopathological characteristics and prognostic analysis of tumor-infiltrating lymphocytes (TILs) in ductal carcinoma in situ (DCIS) and DCIS with microinvasion (DCIS-Mi) of the breast[J]. Breast Cancer Res Treat, 2022, 193(1): 111-120. DOI: 10.1007/s10549-022-06553-z.
[37]
IZQUIERDO-ALTAREJOS P, MORENO-MANZANO V, FELIPO V. Pathological and therapeutic effects of extracellular vesicles in neurological and neurodegenerative diseases[J]. Neural Regen Res, 2024, 19(1): 55-61. DOI: 10.4103/1673-5374.375301.
[38]
TANG H L, CAO C H, ZHANG G Y, et al. Impact of particle size of multivesicular liposomes on the embolic andtherapeutic effects in rabbit VX2 liver tumor[J]. Drug Deliv, 2023, 30(1): 1-16. DOI: 10.1080/10717544.2022.2157519.
[39]
LU Z C, TANG F C, LI Z C, et al. Prognosis risk model based on pyroptosis-related lncRNAs for bladder cancer[J/OL]. Dis Markers, 2022, 2022: 7931393 [2023-08-14]. https://pubmed.ncbi.nlm.nih.gov/35154513/. DOI: 10.1155/2022/7931393.
[40]
ZHENG J, ZHOU T, LI F, et al. Clinic-pathological features of breast ductal carcinoma in situ with micro-invasion[J]. Cancer Invest, 2020, 38(2): 113-121. DOI: 10.1080/07357907.2020.1715422.
[41]
LIU H, LIU X W, LIU G Y, et al. The value of apparent diffusion coefficient value in differentiating the Luminal-type and non-Luminal-type breast cancer and evaluating tumor cell proliferation activity[J]. Chin J Magn Reson Imag, 2023, 14(4): 51-56. DOI: 10.12015/issn.1674-8034.2023.04.010.
[42]
SMITS H J G, RUITER L N, BREIMER G E, et al. Using intratumor heterogeneity of immunohistochemistry biomarkers to classify laryngeal and hypopharyngeal tumors based on histologic features[J/OL]. Mod Pathol, 2023, 36(8): 100199 [2023-08-14]. https://pubmed.ncbi.nlm.nih.gov/37116830/. DOI: 10.1016/j.modpat.2023.100199.
[43]
RISOM T, GLASS D R, AVERBUKH I, et al. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma[J/OL]. Cell, 2022, 185(2): 299-310.e18 [2023-08-14]. https://pubmed.ncbi.nlm.nih.gov/35063072/. DOI: 10.1016/j.cell.2021.12.023.
[44]
DECKWIRTH V, RAJAKYLÄ E K, CATTAVARAYANE S, et al. Cytokeratin 5 determines maturation of the mammary myoepithelium[J/OL]. iScience, 2021, 24(5): 102413 [2023-08-14]. https://pubmed.ncbi.nlm.nih.gov/34007958/. DOI: 10.1016/j.isci.2021.102413.
[45]
GIBSON S V, TOMAS BORT E, RODRÍGUEZ-FERNÁNDEZ L, et al. TGFβ-mediated MMP13 secretion drives myoepithelial cell dependent breast cancer progression[J/OL]. NPJ Breast Cancer, 2023, 9(1): 9 [2023-08-14]. https://pubmed.ncbi.nlm.nih.gov/36864079/. DOI: 10.1038/s41523-023-00513-6.
[46]
HUANG C Z, ZHAO S M, YANG Y J, et al. TP63 gain-of-function mutations cause premature ovarian insufficiency by inducing oocyte apoptosis[J/OL]. J Clin Invest, 2023, 133(5): e162315 [2023-08-14]. https://pubmed.ncbi.nlm.nih.gov/36856110/. DOI: 10.1172/JCI162315.

PREV 3D-MIP reconstruction and multi parameter evaluation of BI-RADS 4 breast tumors based on DCE-MRI
NEXT Nomogram for predicting lymphovascular invasion in breast cancer using MRI features and quantitative parameters
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn