Share:
Share this content in WeChat
X
Clinical Article
Evaluation of left ventricular diastolic dysfunction in hypertrophic cardiomyopathy using 4D Flow CMR: Impact of myocardial fibrosis
ZHENG Yan  MA Lirong  GUO Jiaxuan  ZHANG Huairong  SUN Xiao  SUN Kai  WANG Yifan  ZHU Li 

Cite this article as ZHENG Y, MA L R, GUO J X, et al. Evaluation of left ventricular diastolic dysfunction in hypertrophic cardiomyopathy using 4D Flow CMR: Impact of myocardial fibrosis[J]. Chin J Magn Reson Imaging, 2024, 15(5): 119-125. DOI:10.12015/issn.1674-8034.2024.05.019.


[Abstract] Objective Four-dimensional flow (4D Flow) cardiac magnetic resonance (CMR) technology was used to evaluate the presence of left ventricular diastolic dysfunction in patients with hypertrophic cardiomyopathy (HCM), and the effect of myocardial fibrosis on left ventricular diastolic function in HCM patients was explored.Materials and Methods A total of 44 HCM patients were prospectively enrolled, and they were divided into HCM late gadolinium enhancement (LGE) (+) group (25 cases) and HCM LGE (-) group (19 cases) according to whether the patients had LGE, and 31 healthy controls were included in the same period. All three groups underwent 3.0 T magnetic resonance imaging, including steady-state free precession sequences and 4D Flow CMR scans. Analysis using CVI42 post-processing software included cardiac functional parameters and mitral valve blood flow velocity parameters. Clinical and imaging parameters were compared among the three groups using one-way analysis of variance or Mann-Whitney U test. Correlation analysis was performed between early diastolic mean blood flow velocity (E) and cardiac functional parameters.Results The left ventricular mass (LVmass) and global peak wall thickness (GPWT) of HCM patients were greater than those of healthy controls, and the GPWT of HCM patients with myocardial fibrosis increased more significantly than that of HCM patients without myocardial fibrosis [HCM LGE (+) group vs. HCM LGE (-) group vs. healthy control group]; [LVmass: 157.34 (122.24, 194.38) g vs. 148.29 (131.79, 189.83) g vs. 85.73 (73.00, 94.02) g; GPWT: 20.04 (16.76, 24.99) mm vs. 17.46 (16.19, 19.99) mm vs. 9.47 (8.35, 10.92) mm] (P<0.001); The peak early diastolic mean blood flow velocity (peak E) of HCM patients with myocardial fibrosis was lower than that of HCM patients without myocardial fibrosis, and was lower than that of healthy control group [HCM LGE (+) group vs. HCM LGE (-) group vs. healthy control group: (30.03±11.33) cm/s vs. (38.05±12.03) cm/s vs. (47.44±10.82) cm/s] (P<0.001), while there was no significant difference in the peak value of mean blood flow velocity (peak A) in late diastolic period between the three groups, and the E/A value of HCM patients with myocardial fibrosis was significantly lower than that of the healthy control group (1.10±0.61 vs. 1.74±0.85) (P<0.05). The mean blood flow velocity at the mitral valve level in early diastolic was negatively correlated with GPWT and LVmass (r=-0.593/r=-0.371, P<0.001/P=0.001).Conclusions Based on 4D Flow CMR, it can not only accurately measure the blood flow velocity from a three-dimensional perspective, but also quantitatively evaluate the effects of left ventricular diastolic dysfunction and myocardial fibrosis on the left ventricular diastolic function of HCM patients from the hemodynamic aspect.
[Keywords] hypertrophic cardiomyopathy;myocardial fibrosis;left ventricular diastolic function;four-dimensional flow cardiac magnetic resonance;magnetic resonance imaging

ZHENG Yan1   MA Lirong1   GUO Jiaxuan1   ZHANG Huairong2   SUN Xiao2   SUN Kai2   WANG Yifan2   ZHU Li2*  

1 The First Clinical Medical College of Ningxia Medical University, Yinchuan 750004, China

2 Department of Radiology, General Hospital of Ningxia Medical University, Yichuan 750004, China

Corresponding author: ZHU L, E-mail: zhuli72@163.com

Conflicts of interest   None.

Received  2024-01-10
Accepted  2024-04-29
DOI: 10.12015/issn.1674-8034.2024.05.019
Cite this article as ZHENG Y, MA L R, GUO J X, et al. Evaluation of left ventricular diastolic dysfunction in hypertrophic cardiomyopathy using 4D Flow CMR: Impact of myocardial fibrosis[J]. Chin J Magn Reson Imaging, 2024, 15(5): 119-125. DOI:10.12015/issn.1674-8034.2024.05.019.

[1]
Joint Committee of Cardiomyopathy Specialty Alliance, National Center for Cardiovascular Diseases/Cardiovascular Precision Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care. 2023 guideline for diagnosis and treatment of patients with hypertrophic cardiomyopathy[J]. Chin Circ J, 2023, 38(1): 1-33. DOI: 10.3969/j.issn.1000-3614.2023.01.001.
[2]
D'ASCENZI F, VALENTINI F, PISTORESI S, et al. Causes of sudden cardiac death in young athletes and non-athletes: systematic review and meta-analysis: sudden cardiac death in the young[J]. Trends Cardiovasc Med, 2022, 32(5): 299-308. DOI: 10.1016/j.tcm.2021.06.001.
[3]
MARON B J, SPIRITO P, ACKERMAN M J, et al. Prevention of sudden cardiac death with implantable cardioverter-defibrillators in children and adolescents with hypertrophic cardiomyopathy[J]. J Am Coll Cardiol, 2013, 61(14): 1527-1535. DOI: 10.1016/j.jacc.2013.01.037.
[4]
Chinese Guidelines for the diagnosis and treatment of adult hypertrophic cardiomyopathy, Chinese Society of Cardiology, Editorial Committee of Chinese Journal of Cardiology. Guidelines for diagnosis and treatment of adult hypertrophic cardiomyopathy in China[J]. Chin J Cardiol, 2017, 45(12): 1015-1032. DOI: 10.3760/cma.j.issn.0253-3758.2017.12.005.
[5]
WENG Z, YAO J L, CHAN R H, et al. Prognostic value of LGE-CMR in HCM: a meta-analysis[J]. JACC Cardiovasc Imaging, 2016, 9(12): 1392-1402. DOI: 10.1016/j.jcmg.2016.02.031.
[6]
CHOUDHURY L, MAHRHOLDT H, WAGNER A, et al. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy[J]. J Am Coll Cardiol, 2002, 40(12): 2156-2164. DOI: 10.1016/s0735-1097(02)02602-5.
[7]
GREEN J J, BERGER J S, KRAMER C M, et al. Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy[J]. JACC Cardiovasc Imaging, 2012, 5(4): 370-377. DOI: 10.1016/j.jcmg.2011.11.021.
[8]
RAIKER N, VULLAGANTI S, COLLINS J D, et al. Myocardial tissue characterization by gadolinium-enhanced cardiac magnetic resonance imaging for risk stratification of adverse events in hypertrophic cardiomyopathy[J]. Int J Cardiovasc Imaging, 2020, 36(6): 1147-1156. DOI: 10.1007/s10554-020-01808-6.
[9]
CHAN R H, MARON B J, OLIVOTTO I, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy[J]. Circulation, 2014, 130(6): 484-495. DOI: 10.1161/CIRCULATIONAHA.113.007094.
[10]
ONG K C, GESKE J B, HEBL V B, et al. Pulmonary hypertension is associated with worse survival in hypertrophic cardiomyopathy[J]. Eur Heart J Cardiovasc Imaging, 2016, 17(6): 604-610. DOI: 10.1093/ehjci/jew024.
[11]
Heart Failure Group of Chinese Society of Cardiology of Chinese Medical Association, Chinese Heart Failure Association of Chinese Medical Doctor Association, Editorial Board of Chinese Journal of Cardiology. China guidelines for diagnosis and treatment of heart failure 2018[J]. Chin J Cardiol, 2018, 46(10): 760-789. DOI: 10.3760/cma.j.issn.0253-3758.2018.10.004.
[12]
ASHKIR Z, MYERSON S, NEUBAUER S, et al. Four-dimensional flow cardiac magnetic resonance assessment of left ventricular diastolic function[J/OL]. Front Cardiovasc Med, 2022, 9: 866131 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/35935619/. DOI: 10.3389/fcvm.2022.866131.
[13]
Echocardiography Group of Chinese Medical Association of Ultrasound Medicine, Professional Committee of Echocardiography of Cardiovascular Branch of Chinese Medical Doctor Association. Guidelines for clinical application of echocardiography in evaluating cardiac systolic and diastolic function[J]. Chin J Ultrason, 2020, 29(6): 461-477. DOI: 10.3760/cma.j.cn131148-20200227-00115.
[14]
ZHUANG B Y, SIRAJUDDIN A, ZHAO S H, et al. The role of 4D flow MRI for clinical applications in cardiovascular disease: current status and future perspectives[J]. Quant Imaging Med Surg, 2021, 11(9): 4193-4210. DOI: 10.21037/qims-20-1234.
[15]
BISSELL M M, RAIMONDI F, AIT ALI L, et al. 4D Flow cardiovascular magnetic resonance consensus statement: 2023 update[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 40 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/37474977/. DOI: 10.1186/s12968-023-00942-z.
[16]
NAGUEH S F, SMISETH O A, APPLETON C P, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American society of echocardiography and the European association of cardiovascular imaging[J]. Eur Heart J Cardiovasc Imaging, 2016, 17(12): 1321-1360. DOI: 10.1093/ehjci/jew082.
[17]
GESKE J B, OMMEN S R, GERSH B J. Hypertrophic cardiomyopathy: clinical update[J]. JACC Heart Fail, 2018, 6(5): 364-375. DOI: 10.1016/j.jchf.2018.02.010.
[18]
SOULAT G, MCCARTHY P, MARKL M. 4D flow with MRI[J/OL]. Annu Rev Biomed Eng, 2020, 22: 103-126 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/32155346/. DOI: 10.1146/annurev-bioeng-100219-110055.
[19]
SUZUKI M, KOTOOKA N, SAKUMA M, et al. Validity and reliability of three-chamber-view three-directional encoded phase-contrast magnetic resonance velocity-vector mapping for transmitral velocity measurements: comparison with Doppler echocardiography and intra- and inter-observer variability[J]. Magn Reson Med Sci, 2017, 16(2): 152-158. DOI: 10.2463/mrms.mp.2015-0172.
[20]
AUTHORS/TASK FORCE MEMBERS, ELLIOTT P M, ANASTASAKIS A, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2014, 35(39): 2733-2779. DOI: 10.1093/eurheartj/ehu284.
[21]
ZHU Y S, PARK E A, LEE W, et al. Extent of late gadolinium enhancement at right ventricular insertion points in patients with hypertrophic cardiomyopathy: relation with diastolic dysfunction[J]. Eur Radiol, 2015, 25(4): 1190-1200. DOI: 10.1007/s00330-014-3390-8.
[22]
RIZA DEMIR A, CELIK Ö, SEVINÇ S, et al. The relationship between myocardial fibrosis detected by cardiac magnetic resonance and Tp-e interval, 5-year sudden cardiac death risk score in hypertrophic cardiomyopathy patients[J/OL]. Ann Noninvasive Electrocardiol, 2019, 24(5): e12672 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/31152489/. DOI: 10.1111/anec.12672.
[23]
HAN Z Q, LIU J, LU M J, et al. Correlation between cardiac fibrosis and clinical features of hypertrophic cardiomyopathy in young and middle-aged patients[J]. Mol Cardiol China, 2023, 23(2): 5259-5263. DOI: 10.16563/j.cnki.1671-6272.2023.04.004.
[24]
STEEN H, MONTENBRUCK M, KALLIFATIDIS A, et al. Multi-parametric non-contrast cardiac magnetic resonance for the differentiation between cardiac amyloidosis and hypertrophic cardiomyopathy[J]. Clin Res Cardiol, 2024, 113(3): 469-480. DOI: 10.1007/s00392-023-02348-4.
[25]
LI X, SHI K, YANG Z G. Clinical application of multimodality cardiac magnetic resonance imaging in hypertrophic cardiomyopathy[J]. Med J West China, 2020, 32(3): 460-464. DOI: 10.3969/j.issn.1672-3511.2020.03.035.
[26]
XU L J, YAN J C, ZHANG F, et al. Use of inflammatory biomarkers and real-time cardiac catheterisation to evaluate the left ventricular diastolic function in patients with diastolic heart failure[J]. Heart Lung Circ, 2021, 30(3): 396-403. DOI: 10.1016/j.hlc.2020.06.017.
[27]
DENG Q, YUE W J, SUN J Y. Progress in evaluation of left ventricular diastolic function by cardiac magnetic resonance[J]. Chin J Magn Reson Imag, 2021, 12(7): 110-113. DOI: 10.12015/issn.1674-8034.2021.07.026.
[28]
CASTELLETTI S, MENACHO K, DAVIES R H, et al. Hypertrophic cardiomyopathy: insights from extracellular volume mapping[J/OL]. Eur J Prev Cardiol, 2022, 28(18): e39-e41 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/33693514/. DOI: 10.1093/eurjpc/zwaa083.
[29]
CAO Y, ZHANG W. Evaluation of left ventricular diastolic dysfunction[J]. Adv Cardiovasc Dis, 2017, 38(6): 692-696. DOI: 10.16806/j.cnki.issn.1004-3934.2017.06.016.
[30]
CHEN J M, DAI L Y, AI H J, et al. The value of ultrasonic cardiogram in predicting myocardial fibrosis and evaluating left ventricular diastolic function in hypertrophic cardiomyopathy[J]. J Electrocardiol Circ, 2021, 40(4): 380-383, 388, 455. DOI: 10.12124/j.issn.2095-3933.2021.4.2020-4175.
[31]
KRÄMER J, NIEMANN M, LIU D, et al. Two-dimensional speckle tracking as a non-invasive tool for identification of myocardial fibrosis in Fabry disease[J]. Eur Heart J, 2013, 34(21): 1587-1596. DOI: 10.1093/eurheartj/eht098.

PREV Nomogram for predicting lymphovascular invasion in breast cancer using MRI features and quantitative parameters
NEXT Diagnostic and short-term follow-up value of multi-parameter cardiac magnetic resonance in young children with acute myocarditis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn