Share:
Share this content in WeChat
X
Clinical Article
Value of synthetic MRI in differential diagnosis of benign and malignant ovarian adnexal lesions with O-RADS MRI score 3-5
LI Haijiao  CAO Kun  LI Xiaoting  SUN Nan  LUO Yao  XUE Ke  YANG Yuxin  SUN Yingshi 

Cite this article as LI H J, CAO K, LI X T, et al. Value of synthetic MRI in differential diagnosis of benign and malignant ovarian adnexal lesions with O-RADS MRI score 3-5[J]. Chin J Magn Reson Imaging, 2024, 15(5): 148-153, 161. DOI:10.12015/issn.1674-8034.2024.05.023.


[Abstract] Objective To investigate the diagnostic efficacy of synthetic MRI (syMRI) in differentiation of benign and malignant ovarian adnexal lesions with Ovarian-Adnexal Reporting and Data System (O-RADS) MRI score 3-5.Materials and Methods Totally 100 patients with 126 ovarian adnexal lesions scored 3-5 according to O-RADS MRI in our hospital from August 2021 to June 2023 were retrospectively enrolled. The diagnosis was confirmed via pathological examination or one-year follow-up. All patients underwent pelvic syMRI and diffusion-weighted imaging (DWI) on a 3.0 T MR scanner. Regions of interest (ROIs) were placed on the largest slice of the solid part of adnexal lesion and avoid the cystic or necrotic areas. Quantitative parameters of syMRI [T1, proton density (PD), T2*, R2*] and apparent diffusion coefficient (ADC) values were calculated. Independent samples t test and Mann-Whitney U test were utilized to compare the differences of quantitative parameters between benign and malignant lesions. Two models, the syMRI model and the syMRI+ADC model, were constructed using logistic regression analysis. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic efficacy of the individual quantitative parameters and diagnostic models. DeLong test was employed to compare the difference of area under the curve (AUC).Results Among 126 ovarian adnexal lesions, 55 lesions were benign, and 71 lesions were malignant. T1, T2*, R2*, and ADC showed significant difference between groups (all P<0.05) and the AUCs of these parameters in differentiating benign and malignant adnexal lesions were 0.739 [95% confidence interval (CI): 0.652-0.826], 0.780 (95% CI: 0.698-0.862), 0.783 (95% CI: 0.699-0.866), and 0.674 (95% CI: 0.576-0.772), respectively. The AUCs of syMRI and syMRI+ADC models were 0.860 (95% CI: 0.791-0.929) and 0.879 (95% CI: 0.818-0.940), respectively. The AUCs of the two models showed no statistical difference, and both of them were higher than that of ADC (all P<0.05).Conclusions The syMRI proved to be valuable in differential diagnosis of benign and malignant ovarian adnexal lesions with O-RADS MRI score 3-5.
[Keywords] ovarian neoplasms;magnetic resonance imaging;synthetic magnetic resonance imaging;Ovarian-Adnexal Reporting and Data System;differential diagnosis

LI Haijiao1   CAO Kun1*   LI Xiaoting1   SUN Nan1   LUO Yao1   XUE Ke2   YANG Yuxin2   SUN Yingshi1  

1 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing 100142, China

2 Department of MR Collaboration, United Imaging Research Institute of Intelligent Imaging, Beijing 100089, China

Corresponding author: CAO K, Email: kun-cao@hotmail.com

Conflicts of interest   None.

Received  2024-01-10
Accepted  2024-04-23
DOI: 10.12015/issn.1674-8034.2024.05.023
Cite this article as LI H J, CAO K, LI X T, et al. Value of synthetic MRI in differential diagnosis of benign and malignant ovarian adnexal lesions with O-RADS MRI score 3-5[J]. Chin J Magn Reson Imaging, 2024, 15(5): 148-153, 161. DOI:10.12015/issn.1674-8034.2024.05.023.

[1]
SADOWSKI E A, THOMASSIN-NAGGARA I, ROCKALL A, et al. O-RADS MRI risk stratification system: guide for assessing adnexal lesions from the ACR O-RADS committee[J]. Radiology, 2022, 303(1): 35-47. DOI: 10.1148/radiol.204371.
[2]
ZHANG Q, ZHANG Y L, LIU X. Research progress of synthetic magnetic resonance imaging technology in malignant tumors[J]. Chin J Magn Reson Imag, 2023, 14(5): 196-202.
[3]
THOMASSIN-NAGGARA I, DABI Y, FLORIN M, et al. O-RADS MRI SCORE: an essential first-step tool for the characterization of adnexal masses[J]. J Magn Reson Imaging, 2024, 59(3): 720-736. DOI: 10.1002/jmri.28947.
[4]
WENGERT G J, DABI Y, KERMARREC E, et al. O-RADS MRI classification of indeterminate adnexal lesions: time-intensity curve analysis is better than visual assessment[J]. Radiology, 2022, 303(3): 566-575. DOI: 10.1148/radiol.210342.
[5]
THOMASSIN-NAGGARA I, RAZAKAMANANTSOA L, ROCKALL A. O-RADS MRI: where are we and where we are going?[J]. Eur Radiol, 2023, 33(11): 8155-8156. DOI: 10.1007/s00330-023-09732-8.
[6]
RIZZO S, COZZI A, DOLCIAMI M, et al. O-RADS MRI: a systematic review and meta-analysis of diagnostic performance and category-wise malignancy rates[J/OL]. Radiology, 2023, 307(1): e220795 [2023-12-05]. https://pubmed.ncbi.nlm.nih.gov/36413127/. DOI: 10.1148/radiol.220795.
[7]
WONG B Z Y, CAUSA ANDRIEU P I, SONODA Y, et al. Improving risk stratification of indeterminate adnexal masses on MRI: what imaging features help predict malignancy in O-RADS MRI 4 lesions?[J/OL]. Eur J Radiol, 2023, 168: 111122 [2023-12-05]. https://pubmed.ncbi.nlm.nih.gov/37806193/. DOI: 10.1016/j.ejrad.2023.111122.
[8]
ASSOULINE V, DABI Y, JALAGUIER-COUDRAY A, et al. How to improve O-RADS MRI score for rating adnexal masses with cystic component?[J]. Eur Radiol, 2022, 32(9): 5943-5953. DOI: 10.1007/s00330-022-08644-3.
[9]
MANGANARO L, CIULLA S, CELLI V, et al. Impact of DWI and ADC values in Ovarian-Adnexal Reporting and Data System (O-RADS) MRI score[J]. Radiol Med, 2023, 128(5): 565-577. DOI: 10.1007/s11547-023-01628-3.
[10]
ELSHETRY A S F, HAMED E M, FRERE R A F, et al. Impact of adding mean apparent diffusion coefficient (adcmean) measurements to o-rads MRI scoring for adnexal lesions characterization: a combined o-rads MRI/adcmean approach[J]. Acad Radiol, 2023, 30(2): 300-311. DOI: 10.1016/j.acra.2022.07.019.
[11]
YU Y B, SONG X L, ZENG Z, et al. Amide proton transfer weighted MRI in differential diagnosis of ovarian masses with cystic components: a preliminary study[J]. Magn Reson Imaging, 2023, 103: 216-223. DOI: 10.1016/j.mri.2023.07.014.
[12]
TÜRKOĞLU S, KAYAN M. Differentiation between benign and malignant ovarian masses using multiparametric MRI[J]. Diagn Interv Imaging, 2020, 101(3): 147-155. DOI: 10.1016/j.diii.2020.01.006.
[13]
LIU B Y, LIN X N, ZHANG X Z, et al. DCE-MRI and multi-b-value DWI for differentiating benign from malignant ovarian epithelial tumor[J]. Radiol Pract, 2021, 36(2): 216-221. DOI: 10.13609/j.cnki.1000-0313.2021.02.013.
[14]
LEVY A, MEDJHOUL A, CARAMELLA C, et al. Interest of diffusion-weighted echo-planar MR imaging and apparent diffusion coefficient mapping in gynecological malignancies: a review[J]. J Magn Reson Imaging, 2011, 33(5): 1020-1027. DOI: 10.1002/jmri.22546.
[15]
KIM H J, LEE S Y, SHIN Y R, et al. The value of diffusion-weighted imaging in the differential diagnosis of ovarian lesions: a meta-analysis[J/OL]. PLoS One, 2016, 11(2): e0149465 [2023-12-05]. https://pubmed.ncbi.nlm.nih.gov/26907919/. DOI: 10.1371/journal.pone.0149465.
[16]
WARNTJES J B, LEINHARD O D, WEST J, et al. Rapid magnetic resonance quantification on the brain: Optimization for clinical usage[J]. Magn Reson Med, 2008, 60(2): 320-329. DOI: 10.1002/mrm.21635.
[17]
WARNTJES J B, DAHLQVIST O, LUNDBERG P. Novel method for rapid, simultaneous T1, T2*, and proton density quantification[J]. Magn Reson Med, 2007, 57(3): 528-537. DOI: 10.1002/mrm.21165.
[18]
YE Y Q, LYU J Y, HU Y C, et al. Multi-parametric MR imaging with fLEXible design (MULTIPLEX)[J]. Magn Reson Med, 2021, 87(2): 658-673. DOI: 10.1002/mrm.28999.
[19]
LI F Z, LI Q, WU S S, et al. Histogram features of quantitative parameters from synthetic MRI and ADC map in predicting the expression of Ki-67 in breast cancer[J]. Chin J Magn Reson Imag, 2022, 13(7): 29-34, 67. DOI: 10.12015/issn.1674-8034.2022.07.006.
[20]
ZHAO R M, DU S Y, GAO S, et al. Time course changes of synthetic relaxation time during neoadjuvant chemotherapy in breast cancer: the optimal parameter for treatment response evaluation[J]. J Magn Reson Imaging, 2023, 58(4): 1290-1302. DOI: 10.1002/jmri.28597.
[21]
KAZAMA T, TAKAHARA T, KWEE T C, et al. Quantitative values from synthetic MRI correlate with breast cancer subtypes[J/OL]. Life, 2022, 12(9): 1307 [2023-12-05]. https://pubmed.ncbi.nlm.nih.gov/36143344/. DOI: 10.3390/life12091307.
[22]
CUI Y D, LI C M, HAN S Y, et al. The diagnostic value of synthetic MRI quantitative parameters for prostate cancer[J]. Chin J Radiol, 2021, 55(9): 975-980. DOI: 10.3760/cma.j.cn112149-20200721-00935.
[23]
ARITA Y, TAKAHARA T, YOSHIDA S, et al. Quantitative assessment of bone metastasis in prostate cancer using synthetic magnetic resonance imaging[J]. Invest Radiol, 2019, 54(10): 638-644. DOI: 10.1097/RLI.0000000000000579.
[24]
LIAN S S, LIU H M, MENG T B, et al. Quantitative synthetic MRI for predicting locally advanced rectal cancer response to neoadjuvant chemoradiotherapy[J]. Eur Radiol, 2023, 33(3): 1737-1745. DOI: 10.1007/s00330-022-09191-7.
[25]
ZHU K X, CHEN Z C, CUI L L, et al. The preoperative diagnostic performance of multi-parametric quantitative assessment in rectal carcinoma: a preliminary study using synthetic magnetic resonance imaging[J/OL]. Front Oncol, 2022, 12: 682003 [2023-12-05]. https://pubmed.ncbi.nlm.nih.gov/35707367/. DOI: 10.3389/fonc.2022.682003.
[26]
CAI Q, WEN Z H, HUANG Y P, et al. Investigation of synthetic magnetic resonance imaging applied in the evaluation of the tumor grade of bladder cancer[J]. J Magn Reson Imaging, 2021, 54(6): 1989-1997. DOI: 10.1002/jmri.27770.
[27]
TAKAHASHI N, YOSHINO O, HAYASHIDA E, et al. Quantitative analysis of ovarian cysts and tumors by using T2 star mapping[J]. J Obstet Gynaecol Res, 2020, 46(1): 140-146. DOI: 10.1111/jog.14157.
[28]
TAKAHASHI N, YOSHINO O, MAEDA E, et al. Usefulness of T2 star-weighted imaging in ovarian cysts and tumors[J]. J Obstet Gynaecol Res, 2016, 42(10): 1336-1342. DOI: 10.1111/jog.13056.
[29]
LI Y, SONG Q W, SUN M Y, et al. Use of enhanced T2 star-weighted angiography (ESWAN) and R2* values to distinguish ovarian cysts due to endometriosis from other causes[J]. Abdom Imaging, 2015, 40(6): 1733-1741. DOI: 10.1007/s00261-014-0314-7.
[30]
HAN X, SUN M Y, WANG M Y, et al. The enhanced T2 star weighted angiography (ESWAN) value for differentiating borderline from malignant epithelial ovarian tumors[J]. Eur J Radiol, 2019, 118: 187-193. DOI: 10.1016/j.ejrad.2019.07.011.
[31]
ADAMS L C, RALLA B, JURMEISTER P, et al. Native T1 mapping as an in vivo biomarker for the identification of higher-grade renal cell carcinoma: correlation with histopathological findings[J]. Invest Radiol, 2019, 54(2): 118-128. DOI: 10.1097/RLI.0000000000000515.
[32]
ZHANG F F, GAO X M, CHENG J L, et al. Feasibility of quantitative T1-mapping reflecting histological features of cervical cancer: a primary study[J]. J Clin Radiol, 2020, 39(9): 1807-1811. DOI: 10.13437/j.cnki.jcr.2020.09.029.
[33]
MENG T B, HE N, HE H Q, et al. The diagnostic performance of quantitative mapping in breast cancer patients: a preliminary study using synthetic MRI[J/OL]. Cancer Imaging, 2020, 20(1): 88 [2023-12-05]. https://pubmed.ncbi.nlm.nih.gov/33317609/. DOI: 10.1186/s40644-020-00365-4.
[34]
MATSUDA M, TSUDA T, EBIHARA R, et al. Enhanced masses on contrast-enhanced breast: differentiation using a combination of dynamic contrast-enhanced MRI and quantitative evaluation with synthetic MRI[J]. J Magn Reson Imaging, 2021, 53(2): 381-391. DOI: 10.1002/jmri.27362.
[35]
GAO W B, YANG Q X, LI X H, et al. Synthetic MRI with quantitative mappings for identifying receptor status, proliferation rate, and molecular subtypes of breast cancer[J/OL]. Eur J Radiol, 2022, 148: 110168 [2023-12-05]. https://pubmed.ncbi.nlm.nih.gov/35078137/. DOI: 10.1016/j.ejrad.2022.110168.
[36]
THOMASSIN-NAGGARA I, AUBERT E, ROCKALL A, et al. Adnexal masses: development and preliminary validation of an MR imaging scoring system[J]. Radiology, 2013, 267(2): 432-443. DOI: 10.1148/radiol.13121161.
[37]
SASAGURI K, YAMAGUCHI K, NAKAZONO T, et al. External validation of ADNEX MR SCORING system: a single-centre retrospective study[J]. Clin Radiol, 2019, 74(2): 131-139. DOI: 10.1016/j.crad.2018.10.014.
[38]
THOMASSIN-NAGGARA I, PONCELET E, JALAGUIER-COUDRAY A, et al. Ovarian-adnexal reporting data system magnetic resonance imaging (O-RADS MRI) score for risk stratification of sonographically indeterminate adnexal masses[J]. JAMA Netw Open, 2020, 3(1): e1919896 [2023-12-05]. https://pubmed.ncbi.nlm.nih.gov/31977064/. DOI: 10.1001/jamanetworkopen.2019.19896.
[39]
BASHA M A A, ABDELRAHMAN H M, METWALLY M I, et al. Validity and reproducibility of the ADNEX MR scoring system in the diagnosis of sonographically indeterminate adnexal masses[J]. J Magn Reson Imaging, 2021, 53(1): 292-304. DOI: 10.1002/jmri.27285.

PREV Value of DCE-MRI and IVIM-DWI in predicting pelvic lymph node metastasis from early cervical cancer
NEXT A self-attention-based deep learning model predicts the progression of new bone formation in the sacroiliac joints of patients with axial spondylarthritis on MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn