Share:
Share this content in WeChat
X
Review
Advances in the application of resting-state functional magnetic resonance imaging in adolescent-onset schizophrenia
WANG Lu  LIU Ruishan  LIAO Juan  LI Hongwei  ZHUO Lihua 

Cite this article as WANG L, LIU R S, LIAO J, et al. Advances in the application of resting-state functional magnetic resonance imaging in adolescent-onset schizophrenia[J]. Chin J Magn Reson Imaging, 2024, 15(5): 168-174, 180. DOI:10.12015/issn.1674-8034.2024.05.027.


[Abstract] Adolescent-onset schizophrenia belongs to the category of early-onset schizophrenia, which refers to schizophrenia with onset between the ages of 13-18 years old. Compared with adult-onset schizophrenia, its symptoms are more atypical and severe, its response to antipsychotic medications is poorer, and its etiology and pathogenesis are not yet clear. Resting-state functional MRI (rs-fMRI) is a convenient, noninvasive and objective MRI technique that is easy for subjects to cooperate with, and it can reflect the spontaneous activity of brain neurons both locally and holistically, providing a powerful means for the study of the neuropathological mechanisms of AOS. In this paper, we review the latest progress in the application of rs-fMRI in the study of AOS from the aspects of functional segregation analysis and functional integration analysis, discuss the shortcomings of the current study, and look forward to the direction of further research in the future, with the aim of providing certain clues and bases for further exploring the pathophysiological mechanisms of schizophrenia.
[Keywords] schizophrenia;adolescent;magnetic resonance imaging;resting-state functional magnetic resonance imaging

WANG Lu1, 2   LIU Ruishan1, 2   LIAO Juan1, 2   LI Hongwei2*   ZHUO Lihua1*  

1 Medical Imaging College, North Sichuan Medical College, Nanchong 637000, China

2 Department of Radiology, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, China

Corresponding author: ZHUO L H, E-mail: 1029511104@qq.com LI H W, E-mail: lhw6321@163.com

Conflicts of interest   None.

Received  2024-01-09
Accepted  2024-04-29
DOI: 10.12015/issn.1674-8034.2024.05.027
Cite this article as WANG L, LIU R S, LIAO J, et al. Advances in the application of resting-state functional magnetic resonance imaging in adolescent-onset schizophrenia[J]. Chin J Magn Reson Imaging, 2024, 15(5): 168-174, 180. DOI:10.12015/issn.1674-8034.2024.05.027.

[1]
FADEN J, CITROME L. Schizophrenia: One Name, Many Different Manifestations[J]. Med Clin North Am, 2023, 107(1): 61-72. DOI: 10.1016/j.mcna.2022.05.005.
[3]
KADAKIA A, CATILLON M, FAN Q, et al. The economic burden of schizophrenia in the united states[J/OL]. J Clin Psychiatry, 2022, 83(6): 22m14458 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/36244006/. DOI: 10.4088/JCP.22m14458.
[4]
CASSIDY R M, YANG F, KAPCZINSKI F, et al. Risk factors for suicidality in patients with schizophrenia: A systematic review, meta-analysis, and meta-regression of 96 studies[J]. Schizophr Bull, 2018, 44(4): 787-797. DOI: 10.1093/schbul/sbx131.
[5]
WAHBEH M H, AVRAMOPOULOS D. Gene-environment interactions in schizophrenia: A literature review[J/OL]. Genes (Basel), 2021, 12(12): 1850 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/34946799/. DOI: 10.3390/genes12121850.
[6]
MURLANOVA K, PLETNIKOV M V. Modeling psychotic disorders: Environment x environment interaction[J/OL]. Neurosci Biobehav Rev, 2023, 152: 105310 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/37437753/. DOI: 10.1016/j.neubiorev.2023.105310.
[7]
JU S, SHIN Y, HAN S, et al. The gut-brain axis in schizophrenia: The implications of the gut microbiome and SCFA production[J/OL]. Nutrients, 2023, 15(20): 4391 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/37892465/. DOI: 10.3390/nu15204391.
[8]
PRIOL A C, DENIS L, BOULANGER G, et al. Detection of morphological abnormalities in schizophrenia: An important step to identify associated genetic disorders or etiologic subtypes[J/OL]. Int J Mol Sci, 2021, 22(17): 9464 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/34502372/. DOI: 10.3390/ijms22179464.
[9]
LI Q, CAO X, LIU S, et al. Dynamic alterations of amplitude of low-frequency fluctuations in patients with drug-naive first-episode early onset schizophrenia[J/OL]. Front Neurosci, 2020, 14: 901 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/33122982/. DOI: 10.3389/fnins.2020.00901.
[10]
MCVEY N S, AHN M, KUNZE W A, et al. Adolescence, the microbiota-gut-brain axis, and the emergence of psychiatric disorders[J]. Biol Psychiatry, 2024, 95(4): 310-318. DOI: 10.1016/j.biopsych.2023.10.006.
[11]
LI D, ZHANG F, WANG L, et al. Decision making under ambiguity and risk in adolescent-onset schizophrenia[J/OL]. BMC Psychiatry, 2021, 21(1): 230 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/33947364/. DOI: 10.1186/s12888-021-03230-1.
[12]
DUAN J, GONG X, WOMER F Y, et al. Neurodevelopmental trajectories, polygenic risk, and lipometabolism in vulnerability and resilience to schizophrenia[J/OL]. BMC Psychiatry, 2023, 23(1): 153 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/36894907/. DOI: 10.1186/s12888-023-04597-z.
[13]
LENCZ T, MOYETT A, ARGYELAN M, et al. Frontal lobe fALFF measured from resting-state fMRI as a prognostic biomarker in first-episode psychosis[J]. Neuropsychopharmacology, 2022, 47(13): 2245-2251. DOI: 10.1038/s41386-022-01470-7.
[14]
FENG A, LUO N, ZHAO W, et al. Multimodal brain deficits shared in early-onset and adult-onset schizophrenia predict positive symptoms regardless of illness stage[J]. Hum Brain Mapp, 2022, 43(11): 3486-3497. DOI: 10.1002/hbm.25862.
[15]
PEI Q L, ZHANG H S, WANG B, et al. Study of intracerebral loop in patients with schizophrenia without early onset of schizophrenia by resting state functional magnetic resonance imaging[J]. Chin J CT & MRI, 2018, 16(7): 68-71. DOI: 10.3969/j.issn.1672-5131.2018.07.021.
[16]
ZHENG J, ZHANG Y, GUO X, et al. Disrupted amplitude of low-frequency fluctuations in antipsychotic-naive adolescents with early-onset schizophrenia[J]. Psychiatry Res Neuroimaging, 2016, 249: 20-26. DOI: 10.1016/j.pscychresns.2015.11.006.
[17]
XIONG Y B, REN Y, CUI X H, et al. Resting state fMRI study of amplitude of low-frequency fluctuation in early onset schizophrenia[J]. Chin J Nerv Ment Dis, 2016, 42(5): 272-276. DOI: 10.3969/j.issn.1002-0152.2016.05.004.
[18]
MENON V. 20 years of the default mode network: A review and synthesis[J]. Neuron, 2023, 111(16): 2469-2487. DOI: 10.1016/j.neuron.2023.04.023.
[19]
SMALLWOOD J, BERNHARDT B C, LEECH R, et al. The default mode network in cognition: a topographical perspective[J]. Nat Rev Neurosci, 2021, 22(8): 503-513. DOI: 10.1038/s41583-021-00474-4.
[20]
HU M L, ZONG X F, MANN J J, et al. A review of the functional and anatomical default mode network in schizophrenia[J]. Neurosci Bull, 2017, 33(1): 73-84. DOI: 10.1007/s12264-016-0090-1.
[21]
ZHANG Y, PENG Y, SONG Y, et al. Abnormal functional connectivity of the striatum in first-episode drug-naive early-onset schizophrenia[J/OL]. Brain Behav, 2022, 12(5): e2535 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/35384392/. DOI: 10.1002/brb3.2535.
[22]
HOWES O D, BUKALA B R, BECK K. Schizophrenia: from neurochemistry to circuits, symptoms and treatments[J]. Nat Rev Neurol, 2024, 20(1): 22-35. DOI: 10.1038/s41582-023-00904-0.
[23]
CHEN Z H, CUI Y L, SUN J T, et al. The brain structure and function abnormalities of migraineurs: A systematic review and neuroimaging meta-analysis[J/OL]. Front Neurol, 2022, 13: 1022793 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/36419535/. DOI: 10.3389/fneur.2022.1022793.
[24]
LIU Y, ZHANG Y, LV L, et al. Abnormal neural activity as a potential biomarker for drug-naive first-episode adolescent-onset schizophrenia with coherence regional homogeneity and support vector machine analyses[J]. Schizophr Res, 2018, 192: 408-415. DOI: 10.1016/j.schres.2017.04.028.
[25]
SHI L J, ZHOU H Y, WANG Y, et al. Altered empathy-related resting-state functional connectivity in adolescents with early-onset schizophrenia and autism spectrum disorders[J/OL]. Asian J Psychiatr, 2020, 53: 102167 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/32474345/. DOI: 10.1016/j.ajp.2020.102167.
[26]
FANG X, ZHANG R, BAO C, et al. Abnormal regional homogeneity (ReHo) and fractional amplitude of low frequency fluctuations (fALFF) in first-episode drug-naive schizophrenia patients comorbid with depression[J]. Brain Imaging Behav, 2021, 15(5): 2627-2636. DOI: 10.1007/s11682-021-00465-0.
[27]
GONG J, WANG J, LUO X, et al. Abnormalities of intrinsic regional brain activity in first-episode and chronic schizophrenia: a meta-analysis of resting-state functional MRI[J]. J Psychiatry Neurosci, 2020, 45(1): 55-68. DOI: 10.1503/jpn.180245.
[28]
YANG Y, SUN Y, ZHANG Y, et al. Abnormal patterns of regional homogeneity and functional connectivity across the adolescent first-episode, adult first-episode and adult chronic schizophrenia[J/OL]. Neuroimage Clin, 2022, 36: 103198 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/36116163/. DOI: 10.1016/j.nicl.2022.103198.
[29]
LIU S, WANG H, SONG M, et al. Linked 4-way multimodal brain differences in schizophrenia in a large Chinese Han population[J]. Schizophr Bull. 2019, 45(2): 436-449. DOI: 10.1093/schbul/sby045.
[30]
ZHAO C, ZHU J, LIU X, et al. Structural and functional brain abnormalities in schizophrenia: A cross-sectional study at different stages of the disease[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 83: 27-32. DOI: 10.1016/j.pnpbp.2017.12.017.
[31]
FRIEDMAN N P, ROBBINS T W. The role of prefrontal cortex in cognitive control and executive function[J]. Neuropsychopharmacology, 2022, 47(1): 72-89. DOI: 10.1038/s41386-021-01132-0.
[32]
YAN W, ZHANG R, ZHOU M, et al. Relationships between abnormal neural activities and cognitive impairments in patients with drug-naive first-episode schizophrenia[J/OL]. BMC Psychiatry, 2020, 20(1): 283 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/32503481/. DOI: 10.1186/s12888-020-02692-z.
[33]
ZHU M M, WANG K Z, ZHU Y Y, et al. Resting-state functional MRI study on the functional connectivity of the putamen and the nucleus accumbens in the first-episode untreated schizophrenic patients[J]. Int J Med Radiol, 2022, 45(2): 125-129. DOI: 10.19300/j.2022.L18985.
[34]
HUANG Y, WANG W, HEI G, et al. Altered regional homogeneity and cognitive impairments in first-episode schizophrenia: A resting-state fMRI study[J/OL]. Asian J Psychiatr, 2022, 71: 103055 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/35303593/. DOI: 10.1016/j.ajp.2022.103055.
[35]
FRYER S L, ROACH B J, FORD J M, et al. Relating Intrinsic Low-Frequency BOLD Cortical Oscillations to Cognition in Schizophrenia[J]. Neuropsychopharmacology, 2015, 40(12): 2705-2714. DOI: 10.1038/npp.2015.119.
[36]
LYU H, JIAO J, FENG G, et al. Abnormal causal connectivity of left superior temporal gyrus in drug-naive first- episode adolescent-onset schizophrenia: A resting-state fMRI study[J/OL]. Psychiatry Res Neuroimaging, 2021, 315: 111330 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/34280873/. DOI: 10.1016/j.pscychresns.2021.111330.
[37]
HUGDAHL K. Auditory hallucinations: A review of the ERC "VOICE" project[J]. World J Psychiatry, 2015, 5(2): 193-209. DOI: 10.5498/wjp.v5.i2.193.
[38]
HSIEH T H, SHAW F Z, KUNG C C, et al. Seed correlation analysis based on brain region activation for ADHD diagnosis in a large-scale resting state data set[J/OL]. Front Hum Neurosci, 2023, 17: 1082722 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/37767136/. DOI: 10.3389/fnhum.2023.1082722.
[39]
PENG Y, ZHANG S, ZHOU Y, et al. Abnormal functional connectivity based on nodes of the default mode network in first-episode drug-naive early-onset schizophrenia[J/OL]. Psychiatry Res, 2021, 295: 113578 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/33243520/. DOI: 10.1016/j.psychres.2020.113578.
[40]
HA M, PARK S H, PARK I, et al. Aberrant cortico-thalamo-cerebellar network interactions and their association with impaired cognitive functioning in patients with schizophrenia[J/OL]. Schizophrenia (Heidelb), 2023, 9(1): 50 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/37573437/. DOI: 10.1038/s41537-023-00375-8.
[41]
HARE S M, FORD J M, MATHALON D H, et al. Salience-default mode functional network connectivity linked to positive and negative symptoms of schizophrenia[J]. Schizophr Bull, 2019, 45(4): 892-901. DOI: 10.1093/schbul/sby112.
[42]
RONG B, HUANG H, GAO G, et al. Widespread intra- and inter-network dysconnectivity among large-scale resting state networks in schizophrenia[J/OL]. J Clin Med, 2023, 12(9) 3176 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/37176617/. DOI: 10.3390/jcm12093176.
[43]
SASABAYASHI D, TAKAHASHI T, TAKAYANAGI Y, et al. Resting state hyperconnectivity of the default mode network in schizophrenia and clinical high-risk state for psychosis[J]. Cereb Cortex, 2023, 33(13): 8456-8464. DOI: 10.1093/cercor/bhad131.
[44]
FAN F, TAN S, HUANG J, et al. Functional disconnection between subsystems of the default mode network in schizophrenia[J]. Psychol Med, 2022, 52(12): 2270-2280. DOI: 10.1017/S003329172000416X.
[45]
WANG S, ZHAN Y, ZHANG Y, et al. Abnormal long- and short-range functional connectivity in adolescent-onset schizophrenia patients: A resting-state fMRI study[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 81: 445-451. DOI: 10.1016/j.pnpbp.2017.08.012.
[46]
BERMAN R A, GOTTS S J, MCADAMS H M, et al. Disrupted sensorimotor and social-cognitive networks underlie symptoms in childhood-onset schizophrenia[J]. Brain, 2016, 139(Pt 1): 276-291. DOI: 10.1093/brain/awv306.
[47]
LIU H, KANEKO Y, OUYANG X, et al. Schizophrenic patients and their unaffected siblings share increased resting-state connectivity in the task-negative network but not its anticorrelated task-positive network[J]. Schizophr Bull, 2012, 38(2): 285-294. DOI: 10.1093/schbul/sbq074.
[48]
WANG Y, TANG W, FAN X, et al. Resting-state functional connectivity changes within the default mode network and the salience network after antipsychotic treatment in early-phase schizophrenia[J]. Neuropsychiatr Dis Treat, 2017, 13: 397-406. DOI: 10.2147/NDT.S123598.
[49]
CATANI M, DELL'ACQUA F, THIEBAUT D S M. A revised limbic system model for memory, emotion and behaviour[J]. Neurosci Biobehav Rev, 2013, 37(8): 1724-1737. DOI: 10.1016/j.neubiorev.2013.07.001.
[50]
MENON V. Large-scale brain networks and psychopathology: a unifying triple network model[J]. Trends Cogn Sci, 2011, 15(10): 483-506. DOI: 10.1016/j.tics.2011.08.003.
[51]
LU S, SHAO J, FENG Q, et al. Aberrant interhemispheric functional connectivity in major depressive disorder with and without anhedonia[J/OL]. BMC Psychiatry, 2022, 22(1): 688 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/36348342/. DOI: 10.1186/s12888-022-04343-x.
[52]
CHEN C, HUANG H, QIN X, et al. Reduced inter-hemispheric auditory and memory-related network interactions in patients with schizophrenia experiencing auditory verbal hallucinations[J/OL]. Front Psychiatry, 2022, 13: 956895 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/35990049/. DOI: 10.3389/fpsyt.2022.956895.
[53]
LIU Y, GUO W, ZHANG Y, et al. Decreased resting-state interhemispheric functional connectivity correlated with neurocognitive deficits in drug-naive first-episode adolescent-onset schizophrenia[J]. Int J Neuropsychopharmacol, 2018, 21(1): 33-41. DOI: 10.1093/ijnp/pyx095.
[54]
GUO W, LIU F, CHEN J, et al. Family-based case-control study of homotopic connectivity in first-episode, drug-naive schizophrenia at rest[J/OL]. Sci Rep, 2017, 7: 43312 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/28256527/. DOI: 10.1038/srep43312.
[55]
LI H W, ZHOU M, ZHUO L H, et al. Analysis of voxel-mirrored homotopic connectivity in first-episode drug-naive adolescent onset schizophrenia[J]. J Pract Radiol, 2021, 37(11): 1759-1762. DOI: 10.3969/j.issn.1002-1671.2021.11.004.
[56]
YAN J L, ZHENG X R, ZHENG Y J, et al. Recent advance in role of prefrontal cortex in pathogenesis of schizophrenia[J]. Chin J Neuromed, 2019, 18(2): 194-198. DOI: 10.3760/cma.j.issn.1671-8925.2019.02.016.
[57]
YANG G, ZHANG S, ZHOU Y, et al. Increased resting-state interhemispheric functional connectivity of striatum in first-episode drug-naive adolescent-onset schizophrenia[J/OL]. Asian J Psychiatr, 2022, 76: 103134 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/35551877/. DOI: 10.1016/j.ajp.2022.103134.
[58]
MORALES M, MARGOLIS E B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour[J]. Nat Rev Neurosci, 2017, 18(2): 73-85. DOI: 10.1038/nrn.2016.165.
[59]
JAMES A, JOYCE E, LUNN D, et al. Abnormal frontostriatal connectivity in adolescent-onset schizophrenia and its relationship to cognitive functioning[J]. Eur Psychiatry, 2016, 35: 32-38. DOI: 10.1016/j.eurpsy.2016.01.2426.
[60]
ZHENG J, ZHANG Y, LI M, et al. Aberrant corticostriatal connectivity predict positive symptoms of antipsychotic-naive patients with adolescent-onset schizophrenia during brain maturation[J]. Schizophr Res, 2018, 195: 564-566. DOI: 10.1016/j.schres.2017.10.025.
[61]
YANG W, PILOZZI A, HUANG X. An overview of ICA/BSS-based application to Alzheimer's brain signal processing[J/OL]. Biomedicines, 2021, 9(4): 386 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/33917280/. DOI: 10.3390/biomedicines9040386.
[62]
JI R, ZHOU M, OU N, et al. Large-scale networks underlie cognitive insight differs between untreated adolescents ongoing their first schizophrenic episode and their reference non-schizophrenic mates[J/OL]. Heliyon, 2022, 8(10): e10818 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/36217472/. DOI: 10.1016/j.heliyon.2022.e10818.
[63]
ANDREWS-HANNA J R, SMALLWOOD J, SPRENG R N. The default network and self-generated thought: component processes, dynamic control, and clinical relevance[J]. Ann N Y Acad Sci, 2014, 1316(1): 29-52. DOI: 10.1111/nyas.12360.
[64]
ZHANG L, LI B, WANG H, et al. Decreased middle temporal gyrus connectivity in the language network in schizophrenia patients with auditory verbal hallucinations[J]. Neurosci Lett, 2017, 653: 177-182. DOI: 10.1016/j.neulet.2017.05.042.
[65]
KRISTINSSON S, THORS H, YOURGANOY G, et al. Brain damage associated with impaired sentence processing in acute aphasia[J]. J Cogn Neurosci, 2020, 32(2): 256-271. DOI: 10.1162/jocn_a_01478.
[66]
CUI Y, LIU B, SONG M, et al. Auditory verbal hallucinations are related to cortical thinning in the left middle temporal gyrus of patients with schizophrenia[J]. Psychol Med, 2018, 48(1): 115-122. DOI: 10.1017/S0033291717001520.
[67]
CHEN Z W, JIANG G H, YE X, et al. Research progress of resting-state functional magnetic resonance imaging in the brain function of insomnia disorder[J]. Chin J Magn Reson Imaging, 2023, 14(1): 151-155. DOI: 10.3969/j.issn.1002-1671.2021.11.004.
[68]
HILLAND E, JOHANNESSEN C, JONASSEN R, et al. Aberrant default mode connectivity in adolescents with early-onset psychosis: A resting state fMRI study[J/OL]. Neuroimage Clin, 2022, 33: 102881 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/34883402/. DOI: 10.1016/j.nicl.2021.102881.
[69]
LI Q, LIU S, CAO X, et al. Disassociated and concurrent structural and functional abnormalities in the drug-naive first-episode early onset schizophrenia[J]. Brain Imaging Behav, 2022, 16(4): 1627-1635. DOI: 10.1007/s11682-021-00608-3.
[70]
ZHUO C, CHEN G, CHEN J, et al. Baseline global brain structural and functional alterations at the time of symptom onset can predict subsequent cognitive deterioration in drug-naive first-episode schizophrenia patients: Evidence from a follow-up study[J/OL]. Front Psychiatry, 2022, 13: 1012428 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/36311504/. DOI: 10.3389/fpsyt.2022.1012428.
[71]
ZHUO C, LI G, JI F, et al. Differences in functional connectivity density among subtypes of schizophrenic auditory hallucination[J]. Brain Imaging Behav, 2020, 14(6): 2587-2593. DOI: 10.1007/s11682-019-00210-8.
[72]
WANG X, LIAO W, HAN S, et al. Abnormal white matter functional connectivity density in antipsychotic-naive adolescents with schizophrenia[J]. Clin Neurophysiol, 2021, 132(5): 1025-1032. DOI: 10.1016/j.clinph.2020.12.031.
[73]
LI J, BISWAL B B, WANG P, et al. Exploring the functional connectome in white matter[J]. Hum Brain Mapp, 2019, 40(15): 4331-4344. DOI: 10.1002/hbm.24705.
[74]
LIU C, ZHANG W, CHEN G, et al. Aberrant patterns of local and long-range functional connectivity densities in schizophrenia[J]. Oncotarget, 2017, 8(29): 48196-48203. DOI: 10.18632/oncotarget.18441.
[75]
ABDUL-RAHMAN M F, QIU A, SIM K. Regionally specific white matter disruptions of fornix and cingulum in schizophrenia[J/OL]. PLoS One, 2011, 6(4): e18652 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/21533181/. DOI: 10.1371/journal.pone.0018652.
[76]
STAHL S M. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate[J]. CNS Spectr, 2018, 23(3): 187-191. DOI: 10.1017/S1092852918001013.
[77]
HAN S, CUI Q, GUO X, et al. Disconnectivity between the raphe nucleus and subcortical dopamine-related regions contributes altered salience network in schizophrenia[J]. Schizophr Res, 2020, 216: 382-388. DOI: 10.1016/j.schres.2019.11.006.
[78]
SUN F, ZHAO Z, LAN M, et al. Abnormal dynamic functional network connectivity of the mirror neuron system network and the mentalizing network in patients with adolescent-onset, first-episode, drug-naive schizophrenia[J]. Neurosci Res, 2021, 162: 63-70. DOI: 10.1016/j.neures.2020.01.003.
[79]
DECETY J, LAMM C. The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition[J]. Neuroscientist, 2007, 13(6): 580-593. DOI: 10.1177/1073858407304654.
[80]
LENARTOWICZ A, VERBRUGGEN F, LOGAN G D, et al. Inhibition-related activation in the right inferior frontal gyrus in the absence of inhibitory cues[J]. J Cogn Neurosci, 2011, 23(11): 3388-3399. DOI: 10.1162/jocn_a_00031.
[81]
SCHILBACH L, DERNTL B, ALEMAN A, et al. Differential patterns of dysconnectivity in mirror neuron and mentalizing networks in schizophrenia[J]. Schizophr Bull, 2016, 42(5): 1135-1148. DOI: 10.1093/schbul/sbw015.
[82]
SALVATORE G, DIMAGGIO G, LYSAKER P H. An intersubjective perspective on negative symptoms of schizophrenia: implications of simulation theory[J]. Cogn Neuropsychiatry, 2007, 12(2): 144-164. DOI: 10.1080/13546800600819921.

PREV Benign notochordal cell tumor of the lumbar spine: One case report
NEXT Progress in real-time functional magnetic resonance imaging neurofeedback in obesity
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn