Share:
Share this content in WeChat
X
Review
Progress in real-time functional magnetic resonance imaging neurofeedback in obesity
LI Xin  SUN Yongbing  ZHOU Jing  HE Junya  QIAO Qi  LIN Xinbei  ZOU Zhi  LI Zhonglin  WU Xiaoling  ZHANG Gong  LÜ Xue  LI Hao  HU Yangxi  LI Fengli  LI Yongli 

Cite this article as LI X, SUN Y B, ZHOU J, et al. Progress in real-time functional magnetic resonance imaging neurofeedback in obesity[J]. Chin J Magn Reson Imaging, 2024, 15(5): 175-180. DOI:10.12015/issn.1674-8034.2024.05.028.


[Abstract] The central factor in obesity and the failure to maintain a healthy weight after weight loss is mostly food addiction, which is manifested in neuroimaging as an imbalance in the neural loop between the reward network and the cognitive control network. Real time functional magnetic resonance imaging neurofeedback (rtfMRI-NF), a novel biofeedback technique, has been applied in clinical research and treatment in other substance addiction fields. In food-addicted obesity rtfMRI-NF has the same potential to remodel abnormal brain functions, improve ingestive behaviors, and achieve weight loss. This review summarizes the functional magnetic resonance brain imaging models of food addiction in obese patients, explores the feasible neural targets for applying rtfMRI-NF as its potential therapeutic tool, and reviews the recent research progress of rtfMRI-NF in obesity applications, which will serve as a reference for the future therapeutic strategies and clinical guidance of rtfMRI-NF in obesity.
[Keywords] obesity;food addiction;real time functional magnetic resonance imaging neurofeedback;magnetic resonance imaging;reward function

LI Xin1   SUN Yongbing2   ZHOU Jing3   HE Junya1   QIAO Qi2   LIN Xinbei2   ZOU Zhi2   LI Zhonglin2   WU Xiaoling4   ZHANG Gong5   LÜ Xue6   LI Hao7   HU Yangxi8   LI Fengli8   LI Yongli3*  

1 Department of Medical Imaging, Henan University People's Hospital/Henan Provincial People's Hospital, Zhengzhou 450003, China

2 Department of Medical Imaging, Zhengzhou University People's Hospital, Zhengzhou 450003, China

3 Department of Health Management, Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Chronic Disease, Zhengzhou 450003, China

4 Department of Nuclear Medicine, Henan Provincial People's Hospital/Zhengzhou University People's Hospital, Zhengzhou 450003, China

5 Seven Oaks Health Management Center in Canada, China-Canada Health Engineering Research Institute, Hefei 230000, China

6 Department of Health Management, Henan Provincial People's Hospital, Zhengzhou 450003, China

7 Department of Health Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou 450003, China

8 Department of Weight Loss Metabolism, Zhengzhou Center Hospital Affiliated with Zhengzhou University, Zhengzhou 450003, China

Corresponding author: LI Y L, E-mail: shyliyongli@126.com

Conflicts of interest   None.

Received  2023-12-18
Accepted  2024-04-30
DOI: 10.12015/issn.1674-8034.2024.05.028
Cite this article as LI X, SUN Y B, ZHOU J, et al. Progress in real-time functional magnetic resonance imaging neurofeedback in obesity[J]. Chin J Magn Reson Imaging, 2024, 15(5): 175-180. DOI:10.12015/issn.1674-8034.2024.05.028.

[1]
SAFAEI M, SUNDARARAJAN E A, DRISS M, et al. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity[J/OL]. Comput Biol Med, 2021, 136: 104754 [2023-12-18]. https://linkinghub.elsevier.com/retrieve/pii/S0010-4825(21)00548-5. DOI: 10.1016/j.compbiomed.2021.104754.
[2]
PERDOMO C M, COHEN R V, SUMITHRAN P, et al. Contemporary medical, device, and surgical therapies for obesity in adults[J]. Lancet, 2023, 401(10382): 1116-1130. DOI: 10.1016/S0140-6736(22)02403-5.
[3]
ZHAO X Q, LIU D Y, ZHOU Y D. The central mechanism of emotional eating regulation[J]. Chinese Bulletin of Life Sciences, 2022, 34(5): 496-505. DOI: 10.13376/j.cbls/2022058.
[4]
LI Z L, ZOU Z, ZHOU J, et al. Advances in clinical applications of real-time fMRI neurofeedback[J]. Chinese Imaging Journal of Integrated Traditional and Western Medicine, 2020, 18(5): 523-527. DOI: 10.3969/j.issn.1672-0512.2020.05.026.
[5]
ZHANG M, WU X L, LI Z L, et al. Regulation of amygdala by rtfMRI-NF technique in improving insomnia disorder[J]. Chin J Magn Reson Imaging, 2023, 14(7): 5-9. DOI: 10.12015/issn.1674-8034.2023.07.002.
[6]
MARTZ M E, HART T, HEITZEG M M, et al. Neuromodulation of brain activation associated with addiction: A review of real-time fMRI neurofeedback studies[J/OL]. Neuroimage Clin, 2020, 27: 102350 [2023-12-18]. https://linkinghub.elsevier.com/retrieve/pii/S2213-1582(20)30187-X. DOI: 10.1016/j.nicl.2020.102350.
[7]
PARSONS N, STEWARD T, CLOHESY R, et al. A systematic review of resting-state functional connectivity in obesity: Refining current neurobiological frameworks and methodological considerations moving forward[J/OL]. Rev Endocr Metab Disord, 2022, 23(4): 861-879. DOI: 10.1007/s11154-021-09665-x.
[8]
STICE E, BURGER K. Neural vulnerability factors for obesity[J]. Clin Psychol Rev, 2019, 68: 38-53. DOI: 10.1016/j.cpr.2018.12.002.
[9]
MEDAWAR E, WITTE A V. Impact of obesity and diet on brain structure and function: a gut-brain-body crosstalk[J]. Proc Nutr Soc, 2022, 81(4): 306-316. DOI: 10.1017/S0029665122002786.
[10]
DRELICH-ZBROJA A, MATUSZEK M, KACZOR M, et al. Functional magnetic resonance imaging and obesity-novel ways to seen the unseen[J/OL]. J Clin Med, 2022, 11(12): 3561 [2023-12-18]. https://www.mdpi.com/resolver?pii=jcm11123561. DOI: 10.3390/jcm11123561.
[11]
HALL W L. Conference on "Obesity and the brain"[J]. Proc Nutr Soc, 2022, 81(3): 213-216. DOI: 10.1017/S0029665122000799.
[12]
EDWIN THANARAJAH S, DIFELICEANTONIO A G, ALBUS K, et al. Habitual daily intake of a sweet and fatty snack modulates reward processing in humans[J/OL]. Cell Metab, 2023, 35(4): 571-584.e6 [2023-12-18]. https://linkinghub.elsevier.com/retrieve/pii/S1550-4131(23)00051-7. DOI: 10.1016/j.cmet.2023.02.015.
[13]
MICHAUD A, VAINIK U, GARCIA-GARCIA I, et al. Overlapping neural endophenotypes in addiction and obesity[J/OL]. Front Endocrinol (Lausanne), 2017, 8: 127 [2023-12-18]. https://doi.org/10.3389/fendo.2017.00127. DOI: 10.3389/fendo.2017.00127.
[14]
SYAN S K, MCINTYRE-WOOD C, MINUZZI L, et al. Dysregulated resting state functional connectivity and obesity: A systematic review[J]. Neurosci Biobehav Rev, 2021, 131: 270-292. DOI: 10.1016/j.neubiorev.2021.08.019.
[15]
PARK B Y, BYEON K, LEE M J, et al. Whole-brain functional connectivity correlates of obesity phenotypes[J]. Hum Brain Mapp, 2020, 41(17): 4912-4924. DOI: 10.1002/hbm.25167.
[16]
SMITH L, TOUSSAINT L, MICOLI A, et al. Obesity, putative biological mediators, and cognitive function in a national sample of children and adolescents[J/OL]. Prev Med, 2021, 150: 106659 [2023-12-18]. https://linkinghub.elsevier.com/retrieve/pii/S0091-7435(21)00228-0. DOI: 10.1016/j.ypmed.2021.106659.
[17]
SNYDER L L, FOLAND-ROSS L C, CATO A, et al. Impact of dysglycemia and obesity on the brain in adolescents with and without type 2 diabetes: A pilot study[J/OL]. Pediatr Diabetes, 2022, 23(8): 1674-1686. DOI: 10.1111/pedi.13420.
[18]
LI G, HU Y, ZHANG W, et al. Brain functional and structural magnetic resonance imaging of obesity and weight loss interventions[J]. Mol Psychiatry, 2023, 28(4): 1466-1479. DOI: 10.1038/s41380-023-02025-y.
[19]
FOLDI C J, MORRIS M J, OLDFIELD B J. Executive function in obesity and anorexia nervosa: Opposite ends of a spectrum of disordered feeding behaviour?[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 111: 110395 [2023-12-18]. https://linkinghub.elsevier.com/retrieve/pii/S0278-5846(21)00154-8. DOI: 10.1016/j.pnpbp.2021.110395.
[20]
DE KLERK M T, SMEETS P A M, LA FLEUR S E. Inhibitory control as a potential treatment target for obesity[J]. Nutr Neurosci, 2023, 26(5): 429-444. DOI: 10.1080/1028415X.2022.2053406.
[21]
COSTA K G DA, PRICE M, BORTOLOTTI H, et al. Fat mass predicts food-specific inhibitory control in children[J]. Physiol Behav, 2019, 204: 155-161. DOI: 10.1016/j.physbeh.2019.02.031.
[22]
GUNSTAD J, SANBORN V, HAWKINS M. Cognitive dysfunction is a risk factor for overeating and obesity[J]. Am Psychol, 2020, 75(2): 219-234. DOI: 10.1037/amp0000585.
[23]
ORTEGA F B, MORA-GONZALEZ J, CADENAS-SANCHEZ C, et al. Effects of an exercise program on brain health outcomes for children with overweight or obesity: The activebrains randomized clinical trial[J/OL]. JAMA Netw Open, 2022, 5(8): e2227893 [2023-12-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36040742/. DOI: 10.1001/jamanetworkopen.2022.27893.
[24]
LUO S, ALVES J, HARDY K, et al. Neural processing of food cues in pre-pubertal children[J/OL]. Pediatr Obes, 2019, 14(2): e12435 [2023-12-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/30019454/. DOI: 10.1111/ijpo.12435.
[25]
MASTERSON T D, BERMUDEZ M A, AUSTEN M, et al. Food commercials do not affect energy intake in a laboratory meal but do alter brain responses to visual food cues in children[J]. Appetite, 2019, 132: 154-165. DOI: 10.1016/j.appet.2018.10.010.
[26]
DONOFRY S D, STILLMAN C M, ERICKSON K I. A review of the relationship between eating behavior, obesity and functional brain network organization[J]. Soc Cogn Affect Neurosci, 2020, 15(10): 1157-1181. DOI: 10.1093/scan/nsz085.
[27]
MAYER M A, CATALANI F, FRAIRE J, et al. Inhibitory control and obesity in adolescents: A prospective cohort study[J]. Appetite, 2022, 171: 105910 [2023-12-18]. https://linkinghub.elsevier.com/retrieve/pii/S0195-6663(22)00001-0. DOI: 10.1016/j.appet.2022.105910.
[28]
MICHELS N. Biological underpinnings from psychosocial stress towards appetite and obesity during youth: research implications towards metagenomics, epigenomics and metabolomics[J]. Nutr Res Rev, 2019, 32(2): 282-293. DOI: 10.1017/S0954422419000143.
[29]
DE WOUTERS D'OPLINTER A, RASTELLI M, VAN HUL M, et al. Gut microbes participate in food preference alterations during obesity[J/OL]. Gut Microbes, 2021, 13(1): 1959242 [2023-12-18]. https://www.tandfonline.com/doi/full/10.1080/19490976.2021.1959242. DOI: 10.1080/19490976.2021.1959242.
[30]
MEDAWAR E, BEYER F, THIELEKING R, et al. Prebiotic diet changes neural correlates of food decision-making in overweight adults: a randomised controlled within-subject cross-over trial[J/OL]. Gut, 2023: gutjnl-2023-330365 [2023-12-18]. http://gut.bmj.com/lookup/pmidlookup?view=long&pmid=37793780. DOI: 10.1136/gutjnl-2023-330365.
[31]
FAN S, GUO W, XIAO D, et al. Microbiota-gut-brain axis drives overeating disorders[J/OL]. Cell Metab, 2023: S1550-4131(23)00335-2 [2023-12-18]. https://linkinghub.elsevier.com/retrieve/pii/S1550-4131(23)00335-2. DOI: 10.1016/j.cmet.2023.09.005.
[32]
KOZARZEWSKI L, MAURER L, MÄHLER A, et al. Computational approaches to predicting treatment response to obesity using neuroimaging[J]. Rev Endocr Metab Disord, 2022, 23(4): 773-805. DOI: 10.1007/s11154-021-09701-w.
[33]
WALLACE C W, FORDAHL S C. Obesity and dietary fat influence dopamine neurotransmission: exploring the convergence of metabolic state, physiological stress, and inflammation on dopaminergic control of food intake[J]. Nutr Res Rev, 2022, 35(2): 236-251. DOI: 10.1017/S0954422421000196.
[34]
HARDMAN C A, HERBERT V M B, BRUNSTROM J M, et al. Dopamine and food reward: effects of acute tyrosine/phenylalanine depletion on appetite[J]. Physiol Behav, 2012, 105(5): 1202-1207. DOI: 10.1016/j.physbeh.2011.12.022.
[35]
TELLEZ L A, MEDINA S, HAN W, et al. A gut lipid messenger links excess dietary fat to dopamine deficiency[J]. Science (New York, N.Y.), 2013, 341(6147): 800-802. DOI: 10.1126/science.1239275.
[36]
MORALES I, BERRIDGE K C. "Liking" and "wanting" in eating and food reward: Brain mechanisms and clinical implications[J/OL]. Physiol Behav, 2020, 227: 113152 [2023-12-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/32846152/. DOI: 10.1016/j.physbeh.2020.113152.
[37]
CHAE Y, LEE I S. Central regulation of eating behaviors in humans: Evidence from functional neuroimaging studies[J/OL]. Nutrients, 2023, 15(13): 3010 [2023-12-18]. https://www.mdpi.com/resolver?pii=nu15133010. DOI: 10.3390/nu15133010.
[38]
WEISS F, ZHANG J, ASLAN A, et al. Feasibility of training the dorsolateral prefrontal-striatal network by real-time fMRI neurofeedback[J/OL]. Sci Rep, 2022, 12(1): 1669 [2023-12-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/35102203/. DOI: 10.1038/s41598-022-05675-0.
[39]
LUIGJES J, SEGRAVE R, DE JOODE N, et al. Efficacy of invasive and non-invasive brain modulation interventions for addiction[J]. Neuropsychol Rev, 2019, 29(1): 116-138. DOI: 10.1007/s11065-018-9393-5.
[40]
HUMPSTON C, GARRISON J, ORLOV N, et al. Real-time functional magnetic resonance imaging neurofeedback for the relief of distressing auditory-verbal hallucinations: Methodological and empirical advances[J]. Schizophr Bull, 2020, 46(6): 1409-1417. DOI: 10.1093/schbul/sbaa103.
[41]
SONG S, ZILVERSTAND A, GUI W, et al. Reducing craving and consumption in individuals with drug addiction, obesity or overeating through neuromodulation intervention: a systematic review and meta-analysis of its follow-up effects[J]. Addiction, 2022, 117(5): 1242-1255. DOI: 10.1111/add.15686.
[42]
FRANK S, LEE S, PREISSL H, et al. The obese brain athlete: self-regulation of the anterior insula in adiposity[J/OL]. PLoS One, 2012, 7(8): e42570 [2023-12-18]. https://dx.plos.org/10.1371/journal.pone.0042570. DOI: 10.1371/journal.pone.0042570.
[43]
KOREN T, YIFA R, AMER M, et al. Insular cortex neurons encode and retrieve specific immune responses[J/OL]. Cell, 2021, 184(24): 5902-5915.e17 [2023-12-18]. https://linkinghub.elsevier.com/retrieve/pii/S0092-8674(21)01223-X. DOI: 10.1016/j.cell.2021.10.013.
[44]
KAWAI T, AUTIERI M V, SCALIA R. Adipose tissue inflammation and metabolic dysfunction in obesity[J/OL]. Am J Physiol Cell Physiol, 2021, 320(3): C375-C391 [2023-12-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/33356944/. DOI: 10.1152/ajpcell.00379.2020.
[45]
RANA M, RUIZ S, CORZO A S, et al. Use of real-time functional magnetic resonance imaging-based neurofeedback to downregulate insular cortex in nicotine-addicted smokers[J/OL]. J Vis Exp, 2020 (160) [2023-12-18]. https://doi.org//10.3791/59441. DOI: 10.3791/59441.
[46]
IHSSEN N, SOKUNBI M O, LAWRENCE A D, et al. Neurofeedback of visual food cue reactivity: a potential avenue to alter incentive sensitization and craving[J]. Brain Imaging Behav, 2017, 11(3): 915-924. DOI: 10.1007/s11682-016-9558-x.
[47]
SPETTER M S, MALEKSHAHI R, BIRBAUMER N, et al. Volitional regulation of brain responses to food stimuli in overweight and obese subjects: A real-time fMRI feedback study[J]. Appetite, 2017, 112: 188-195. DOI: 10.1016/j.appet.2017.01.032.
[48]
ZHAI T, SALMERON B J, GU H, et al. Functional connectivity of dorsolateral prefrontal cortex predicts cocaine relapse: implications for neuromodulation treatment[J/OL]. Brain Commun, 2021, 3(2): fcab120 [2023-12-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/34189458/. DOI: 10.1093/braincomms/fcab120.
[49]
KOHL S H, VEIT R, SPETTER M S, et al. Real-time fMRI neurofeedback training to improve eating behavior by self-regulation of the dorsolateral prefrontal cortex: A randomized controlled trial in overweight and obese subjects[J]. NeuroImage, 2019, 191: 596-609. DOI: 10.1016/j.neuroimage.2019.02.033.
[50]
PARET C, GOLDWAY N, ZICH C, et al. Current progress in real-time functional magnetic resonance-based neurofeedback: Methodological challenges and achievements[J/OL]. NeuroImage, 2019, 202: 116107 [2023-12-18]. https://linkinghub.elsevier.com/retrieve/pii/S1053-8119(19)30698-6. DOI: 10.1016/j.neuroimage.2019.116107.
[51]
LUBIANIKER N, GOLDWAY N, FRUCHTMAN-STEINBOK T, et al. Process-based framework for precise neuromodulation[J]. Nat Hum Behav, 2019, 3(5): 436-445. DOI: 10.1038/s41562-019-0573-y.
[52]
ROS T, ENRIQUEZ-GEPPERT S, ZOTEV V, et al. Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist)[J]. Brain: A Journal of Neurology, 2020, 143(6): 1674-1685. DOI: 10.1093/brain/awaa009.
[53]
FEDE S J, DEAN S F, MANUWEERA T, et al. A guide to literature informed decisions in the design of real time fMRI neurofeedback studies: A systematic review[J/OL]. Front Hum Neurosci, 2020, 14: 60 [2023-12-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/32161529/. DOI: 10.3389/fnhum.2020.00060.
[54]
QUIGLEY J A, LOGSDON M K, TURNER C A, et al. Sex differences in vulnerability to addiction[J/OL]. Neuropharmacology, 2021, 187: 108491 [2023-12-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/33567305/. DOI: 10.1016/j.neuropharm.2021.108491.
[55]
HAUGG A, SLADKY R, SKOURAS S, et al. Can we predict real-time fMRI neurofeedback learning success from pretraining brain activity?[J]. Hum Brain Mapp, 2020, 41(14): 3839-3854. DOI: 10.1002/hbm.25089.

PREV Advances in the application of resting-state functional magnetic resonance imaging in adolescent-onset schizophrenia
NEXT Research progress of magnetic resonance 3D-TIWI and diffusion imaging in Alzheimer,s disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn