Share:
Share this content in WeChat
X
Review
Advances in the application of DTI-ALPS in brain glymphoid system related neurological diseases
NIU Xunling  WANG Chengyan  LIU Huaqiong  LI Chenglong  DI Ningning  JIANG Xingyue  XU Chang 

Cite this article as NIU X L, WANG C Y, LIU H Q, et al. Advances in the application of DTI-ALPS in brain glymphoid system related neurological diseases[J]. Chin J Magn Reson Imaging, 2024, 15(5): 192-197. DOI:10.12015/issn.1674-8034.2024.05.031.


[Abstract] Impairment of the glymphoid system(GS), a pathway for waste removal in the brain, can be assessed by diffusion tensor imaging analysis along the perivascular space (DTI-ALPS). Currently, DTI-ALPS has been widely used as a non-invasive method to assess GS function in neurological diseases, and it plays a pivotal role in assessing disease progression, cognitive impairment, and predicting prognosis in neurological diseases. Therefore, this article provides an overview of the introduction of the GS, the advantages of the DTI-ALPS method and its application, and its use in neurological disorders.
[Keywords] glymphoid system;diffusion tensor imaging analysis along the perivascular space;magnetic resonance imaging;nervous system;cognitive impairment

NIU Xunling1   WANG Chengyan1   LIU Huaqiong1   LI Chenglong2   DI Ningning1   JIANG Xingyue1   XU Chang1*  

1 Department of Radiology, Binzhou Medical University Hospital, Binzhou 256603, China

2 Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou 256603, China

Corresponding author: XU C, E-mail: xuchang3183@126.com

Conflicts of interest   None.

Received  2024-01-29
Accepted  2024-04-29
DOI: 10.12015/issn.1674-8034.2024.05.031
Cite this article as NIU X L, WANG C Y, LIU H Q, et al. Advances in the application of DTI-ALPS in brain glymphoid system related neurological diseases[J]. Chin J Magn Reson Imaging, 2024, 15(5): 192-197. DOI:10.12015/issn.1674-8034.2024.05.031.

[1]
RASMUSSEN M K, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders[J]. Lancet Neurol, 2018, 17(11): 1016-1024. DOI: 10.1016/s1474-4422(18)30318-1.
[2]
BAE Y J, CHOI B S, KIM J M, et al. Altered glymphatic system in idiopathicnormal pressure hydrocephalus[J]. Parkinsonism Relat Disord, 2021, 82: 56-60. DOI: 10.1016/j.parkreldis.2020.11.009.
[3]
STEWARD C E, VENKATRAMAN V K, LUI E, et al. Assessment of the DTI‐ALPS parameter along the perivascular space in older adults at risk of dementia[J]. J Neuroimaging, 2021, 31(3): 569-578. DOI: 10.1111/jon.12837.
[4]
CUI H, WANG W, ZHENG X, et al. Decreased AQP4 expression aggravates ɑ-synuclein pathology in Parkinson's disease mice, possibly via impaired glymphatic clearance[J]. J Mol Neurosci, 2021, 71(12): 2500-2513. DOI: 10.1007/s12031-021-01836-4.
[5]
LEE D A, PARK B S, KO J, et al. Glymphatic system dysfunction in temporal lobe epilepsy patients with hippocampal sclerosis[J]. Epilepsia Open, 2022, 7(2): 306-314. DOI: 10.1002/epi4.12594.
[6]
TAOKA T, MASUTANI Y, KAWAI H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases[J]. Jpn J Radiol, 2017, 35(4): 172-178. DOI: 10.1007/s11604-017-0617-z.
[7]
ILIFF J J, WANG M, LIAO Y, et al. A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β[J/OL]. Sci Transl Med, 2012, 4(147): 147ra111 [2024-01-19]. https://pubmed.ncbi.nlm.nih.gov/22896675/. DOI: 10.1126/scitranslmed.3003748.
[8]
CAI X, HARDING I C, SADAKA A H, et al. Mild repetitive head impacts alter perivascular flow in the midbrain dopaminergic system in awake rats[J/OL]. Brain Commun, 2021, 3(4): fcab265 [2024-01-19]. https://pubmed.ncbi.nlm.nih.gov/34806002/. DOI: 10.1093/braincomms/fcab265.
[9]
CHRISTENSEN J, WRIGHT D K, YAMAKAWA G R, et al. Repetitive mild traumatic brain injury alters glymphatic clearance rates in limbic structures of adolescent female rats[J/OL]. Sci Rep, 2020, 10(1): 6254 [2024-01-19]. https://pubmed.ncbi.nlm.nih.gov/32277097/. DOI: 10.1038/s41598-020-63022-7.
[10]
SI X, GUO T, WANG Z, et al. Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson's disease[J/OL]. NPJ Parkinsons Dis, 2022, 8(1): 54 [2024-01-20]. https://pubmed.ncbi.nlm.nih.gov/35487930/. DOI: 10.1038/s41531-022-00316-9.
[11]
TAOKA T, ITO R, NAKAMICHI R, et al. Reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) for evaluating interstitial fluid diffusivity and glymphatic function: CHanges in Alps index on Multiple conditiON acquIsition eXperiment (CHAMONIX) study[J]. Jpn J Radiol, 2021, 40(2): 147-158. DOI: 10.1007/s11604-021-01187-5.
[12]
ZHANG W, ZHOU Y, WANG J, et al. Glymphatic clearance function in patientswith cerebral small vessel disease[J/OL]. NeuroImage, 2021, 238: 118257 [2024-01-19]. https://pubmed.ncbi.nlm.nih.gov/34118396/. DOI: 10.1016/j.neuroimage.2021.118257.
[13]
SIOW T Y, TOH C H, HSU J L, et al. Association of sleep, neuropsychological performance, and gray matter volume with glymphatic function in community-dwelling older adults[J/OL]. Neurology, 2022, 98(8): e829-e838 [2024-01-20]. https://pubmed.ncbi.nlm.nih.gov/34906982/. DOI: 10.1212/wnl.0000000000013215.
[14]
YANG D X, SUN Z, YU M M, et al. Associations of MRI‐derived glymphatic system impairment with global white matter damage and cognitive impairment in mild traumatic brain injury: A DTI‐ALPS study[J]. J Magn Reson Imaging, 2023, 59(2): 639-647. DOI: 10.1002/jmri.28797.
[15]
SHAH S A, LOWDER R J, KUCEYESKI A. Quantitative multimodal imaging in traumatic brain injuries producing impaired cognition[J]. Curr Opin Neurol, 2020, 33(6): 691-698. DOI: 10.1097/wco.0000000000000872.
[16]
WANG M L, WEI X E, YU M M, et al. Cognitive impairment in mild traumatic brain injury: a diffusion kurtosis imaging and volumetric study[J]. Acta Radiologica, 2021, 63(4): 504-512. DOI: 10.1177/0284185121998317.
[17]
DEBARLE C, PERLBARG V, JACQUENS A, et al. Global mean diffusivity: A radiomarker discriminating good outcome long term after traumatic brain injury[J/OL]. Ann Phys Rehabil Med, 2021, 64(2): 101433 [2024-01-20]. https://pubmed.ncbi.nlm.nih.gov/32992024/. DOI: 10.1016/j.rehab.2020.08.002.
[18]
PARK J H, BAE Y J, KIM J S, et al. Glymphatic system evaluation using diffusion tensor imaging in patients with traumatic brain injury[J]. Neuroradiology, 2022, 65(3): 551-557. DOI: 10.1007/s00234-022-03073-x.
[19]
FUKUTA T, OKU N, KOGURE K. Application and utility of liposomal neuroprotective agents and biomimetic nanoparticles for the treatment of ischemic stroke[J/OL]. Pharmaceutics, 2022, 14(2): 361 [2024-01-20]. https://pubmed.ncbi.nlm.nih.gov/35214092/. DOI: 10.3390/pharmaceutics14020361.
[20]
JI C, YU X, XU W, et al. The role of glymphatic system in the cerebral edema formation after ischemic stroke[J/OL]. Exp Neurol, 2021, 340: 113685 [2024-01-20]. https://pubmed.ncbi.nlm.nih.gov/33676917/. DOI: 10.1016/j.expneurol.2021.113685.
[21]
LV T, ZHAO B, HU Q, et al. The Glymphatic System: A Novel Therapeutic Target for Stroke Treatment[J/OL]. Front Aging Neurosci, 2021, 13: 689098 [2024-01-20]. https://pubmed.ncbi.nlm.nih.gov/34305569/. DOI: 10.3389/fnagi.2021.689098.
[22]
QIN Y, LI X, QIAO Y, et al. DTI-ALPS: An MR biomarker for motor dysfunction in patients with subacute ischemic stroke[J/OL]. Front Neurosci, 2023, 17: 1132393 [2023-12-01]. https://pubmed.ncbi.nlm.nih.gov/37065921/. DOI: 10.3389/fnins.2023.1132393.
[23]
KERN K C, WRIGHT C B, LEIGH R. Global changes in diffusion tensor imaging during acute ischemic stroke and post-stroke cognitive performance[J]. J Cereb Blood Flow Metab, 2022, 42(10): 1854-1866. DOI: 10.1177/0271678x221101644.
[24]
LEE S Y, SCHMIT B D, KURPAD S N, et al. Acute magnetic resonance imaging predictors of chronic motor function and tissue sparing in rat cervical spinal cord injury[J]. J Neurotrauma, 2022, 39(23-24): 1727-1740. DOI: 10.1089/neu.2022.0034.
[25]
TOH C H, SIOW T Y. Glymphatic Dysfunction in Patients With IschemicStroke[J/OL]. Front Aging Neurosci, 2021, 13: 756249 [2023-12-01]. https://pubmed.ncbi.nlm.nih.gov/34819849/. DOI: 10.3389/fnagi.2021.756249.
[26]
ZHANG C, SHA J, CAI L, et al. Evaluation of the glymphatic system using the DTI-ALPS index in patients with spontaneous intracerebral haemorrhage[J/OL]. Oxid Med Cell Longev, 2022, 2022: 2694316 [2023-12-01]. https://pubmed.ncbi.nlm.nih.gov/35847591/. DOI: 10.1155/2022/2694316.
[27]
LIU H, YANG S, HE W, et al. Associations among diffusion tensor image along the perivascular space (DTI-ALPS), enlarged perivascular space (ePVS), and cognitive functions in asymptomatic patients with carotid Plaque[J/OL]. Front Neurol, 2022, 12: 789918 [2023-12-01]. https://pubmed.ncbi.nlm.nih.gov/35082748/. DOI: 10.3389/fneur.2021.789918.
[28]
YANG G, DENG N, LIU Y, et al. Evaluation of Glymphatic System Using Diffusion MR Technique in T2DM Cases[J/OL]. Front Hum Neurosci, 2020, 14: 300 [2024-01-20]. https://pubmed.ncbi.nlm.nih.gov/32922272/. DOI: 10.3389/fnhum.2020.00300.
[29]
ZHAI F F, YANG M, WEI Y, et al. Carotid atherosclerosis, dilation, and stiffness relate to cerebral small vessel disease[J/OL]. Neurology, 2020, 94(17): e1811-e1819 [2024-01-20]. https://pubmed.ncbi.nlm.nih.gov/32241954/. DOI: 10.1212/wnl.0000000000009319.
[30]
WANG H, NIE Z Y, LIU M, et al. Clinical characteristics of perivascular space and brain CT perfusion in stroke-free patients with intracranial and extracranial atherosclerosis of different extents[J]. Ann Transl Med, 2020, 8(5): 215-215. DOI: 10.21037/atm.2020.01.35.
[31]
TUO J, HE W, YANG S, et al. Disrupted topological organization of functional networks in asymptomatic carotid plaque without significant carotid stenosis: A resting-state fMRI study[J/OL]. Front Hum Neurosci, 2021, 15: 685763 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/34421560/. DOI: 10.3389/fnhum.2021.685763.
[32]
TIAN Y, CAI X, ZHOU Y, et al. Impaired glymphatic system as evidenced by low diffusivity along perivascular spaces is associated with cerebral small vessel disease: a population-based study[J]. Stroke Vasc Neurol, 2023, 8(5): 413-423. DOI: 10.1136/svn-2022-002191.
[33]
WANG X X, CAO Q C, TENG J F, et al. MRI-visible enlarged perivascular spaces: imaging marker to predict cognitive impairment in older chronic insomnia patients[J]. Eur Radiol, 2022, 32(8): 5446-5457. DOI: 10.1007/s00330-022-08649-y.
[34]
TANG J, ZHANG M, LIU N, et al. The association between glymphatic system dysfunction and cognitive impairment in cerebral small vessel disease[J/OL]. Front Aging Neurosci, 2022, 14: 916633 [2024-01-21]. https://pubmed.ncbi.nlm.nih.gov/35813943/. DOI: 10.3389/fnagi.2022.916633.
[35]
XU J, SU Y, FU J, et al. Glymphatic dysfunction correlates with severity of small vessel disease and cognitive impairment in cerebral amyloid angiopathy[J]. Eur J Neurol, 2022, 29(10): 2895-2904. DOI: 10.1111/ene.15450.
[36]
GUMELER E, AYGUN E, TEZER F I, et al. Assessment of glymphatic function innarcolepsy using DTI-ALPS index[J]. Sleep Med, 2023, 101: 522-527. DOI: 10.1016/j.sleep.2022.12.002.
[37]
HSIAO W C, CHANG H I, HSU S W, et al. Association of cognition and brain reserve in aging and glymphatic function using difusion tensor image-along the perivascular space (DTI-ALPS)[J]. Neuroscience, 2023, 524: 11-20. DOI: 10.1016/j.neuroscience.2023.04.004.
[38]
DAI Z, YANG Z, CHEN X, et al. The aging of glymphatic system in human brain and its correlation with brain charts and neuropsychological functioning[J]. Cereb Cortex, 2023, 33(12): 7896-7903. DOI: 10.1093/cercor/bhad086.
[39]
ZHOU L, NGUYEN T D, LI Y. Parenchymal CSF fraction and DTI‐ALPS in brain aging[J/OL]. Alzheimers Dement, 2022, 18: e069407 [2024-01-25]. https://doi.org/10.1002/alz.069407. DOI: 10.1002/alz.069407.
[40]
TAOKA T, ITO R, NAKAMICHI R, et al. Difusion-weighted image analysis along the perivascular space (DWI-ALPS) for evaluating interstitial fuid status: age dependence in normal subjects[J]. Jpn J Radiol, 2022, 40(9): 894-902. DOI: 10.1007/s11604-022-01275-0.
[41]
SAITO Y, HAYAKAWA Y, KAMAGATA K, et al. Glymphatic system impairment insleep disruption: diffusion tensor image analysis along the perivascular space (DTI-ALPS)[J]. Jpn J Radiol, 2023, 41(12): 1335-1343. DOI: 10.1007/s11604-023-01463-6.
[42]
LEE H J, LEE D A, SHIN K J, et al. Glymphatic system dysfunction in obstructive sleep apnea evidenced by DTI-ALPS[J]. Sleep Med, 2022, 89: 176-181. DOI: 10.1016/j.sleep.2021.12.013.
[43]
HSU J L, WEI Y C, TOH C H, et al. Magnetic resonance images implicate that glymphatic alterations mediate cognitive dysfunction in Alzheimer disease[J]. Annals of Neurology, 2022, 93(1): 164-174. DOI: 10.1002/ana.26516.
[44]
LEE Y, CHOI Y, PARK E J, et al. Improvement of glymphatic–lymphatic drainage of beta-amyloid by focused ultrasound in Alzheimer's disease model[J/OL]. Sci Rep, 2020, 10(1): 16144 [2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/32999351/. DOI: 10.1038/s41598-020-73151-8.
[45]
NAGANAWA S, TAOKA T. The glymphatic system: A review of the challenges in visualizing its structure and function with MR imaging[J]. Magn Reson Med Sci, 2022, 21(1): 182-194. DOI: 10.2463/mrms.rev.2020-0122.
[46]
LOPES D M, LLEWELLYN S K, HARRISON I F. Propagation of tau and α-synuclein in the brain: therapeutic potential of the glymphatic system[J/OL]. Translational Neurodegeneration, 2022, 11(1): 19 [2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/35314000/. DOI: 10.1186/s40035-022-00293-2.
[47]
CHEN H L, CHEN P C, LU C H, et al. Associations among cognitive functions, plasma DNA, and diffusion tensor image along the perivascular space (DTI-ALPS) in patients with Parkinson's disease[J/OL]. Oxid Med Cell Longev, 2021, 2021: 4034509 [2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/33680283/. DOI: 10.1155/2021/4034509.
[48]
SHEN T, YUE Y, BA F, et al. Diffusion along perivascular spaces as marker for impairment of glymphatic system in Parkinson's disease[J/OL]. NPJ Parkinsons Dis, 2022, 8(1): 174 [2023-12-01]. https://pubmed.ncbi.nlm.nih.gov/36543809/. DOI: 10.1038/s41531-022-00437-1.
[49]
CAI J, LIU A, WANG Y, et al. Walking exercise alters pedunculopontine nucleus connectivity in Parkinson's disease in a dose-dependent manner[J/OL]. Front Neurosci, 2022, 16: 930810 [2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/36017180/. DOI: 10.3389/fnins.2022.930810.
[50]
LEE D A, LEE H J, PARK K M. Glymphatic dysfunction in isolated REM sleep behavior disorder[J]. Acta Neurologica Scandinavica, 2021, 145(4): 464-470. DOI: 10.1111/ane.13573.

PREV Study on the application of quantitative susceptibility mapping in the diagnosis and progression tracking of Alzheimer,s disease
NEXT Research progress in imaging prediction of recurrence of ischemic stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn