Share:
Share this content in WeChat
X
Review
Research progress in imaging prediction of recurrence of ischemic stroke
BAI Fan  WANG Xiaochun 

Cite this article as BAI F, WANG X C. Research progress in imaging prediction of recurrence of ischemic stroke[J]. Chin J Magn Reson Imaging, 2024, 15(5): 198-203. DOI:10.12015/issn.1674-8034.2024.05.032.


[Abstract] Cerebral ischemic stroke (CIS) is characterized by high incidence rate, high disability rate, high mortality rate and high recurrence rate. Recurrent patients have a higher disability and mortality rate. Therefore, early identification of high-risk populations for recurrence of ischemic stroke, screening of risk factors for recurrence, prediction of recurrence risk, and targeted intervention can effectively reduce recurrence risk and delay recurrence progression. This article provides a review of the research progress in predicting the recurrence of ischemic stroke using imaging, in order to enhance our understanding of recurrent ischemic stroke and reduce the occurrence of related adverse events caused by recurrence.
[Keywords] ischemic stroke recurrence;imaging;radiomics;machine learning;magnetic resonance imaging

BAI Fan1   WANG Xiaochun2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China

Corresponding author: WANG X C, E-mail: 2010xiaochun@163.com

Conflicts of interest   None.

Received  2023-12-07
Accepted  2024-04-30
DOI: 10.12015/issn.1674-8034.2024.05.032
Cite this article as BAI F, WANG X C. Research progress in imaging prediction of recurrence of ischemic stroke[J]. Chin J Magn Reson Imaging, 2024, 15(5): 198-203. DOI:10.12015/issn.1674-8034.2024.05.032.

[1]
BOUSTIA F, CRESPY A, JANOT K, et al. Management of patients with acute ischemic stroke regarding endovascular treatment[J]. Presse Med, 2019, 48(6): 664-671. DOI: 10.1016/j.lpm.2019.05.005.
[2]
PREVENTION R O S, GROUP T I C W. Brief report on stroke prevention and treatment in China, 2021[J]. Chin J Cerebrovasc Dis, 2023, 20(11): 783-793. DOI: 10.3969/j.issn.1672-5921.2023.11.009.
[3]
ELHEFNAWY M E, SHEIKH GHADZI S M, ALBITAR O, et al. Predictive model of recurrent ischemic stroke: model development from real-world data[J/OL]. Front Neurol, 2023, 14: 1118711 [2023-12-07]. https://doi.org/10.3389/fneur.2023.1118711. DOI: 10.3389/fneur.2023.1118711.
[4]
KHANEVSKI A N, BJERKREIM A T, NOVOTNY V, et al. Recurrent ischemic stroke: Incidence, predictors, and impact on mortality[J]. Acta Neurol Scand, 2019, 140(1): 3-8. DOI: 10.1111/ane.13093.
[5]
ZHANG D F, CHEN Y C, CHEN H, et al. A high-resolution MRI study of relationship between remodeling patterns and ischemic stroke in patients with atherosclerotic middle cerebral artery stenosis[J/OL]. Front Aging Neurosci, 2017, 9: 140 [2023-12-07]. https://doi.org/10.3389/fnagi.2017.00140. DOI: 10.3389/fnagi.2017.00140.
[6]
SUI B, GAO P, LIN Y, et al. Distribution and features of middle cerebral artery atherosclerotic plaques in symptomatic patients: a 3.0 T high-resolution MRI study[J]. Neurol Res, 2015, 37(5): 391-396. DOI: 10.1179/1743132815Y.0000000023.
[7]
WANG Z H, GAO Y, WU Q, et al. Meta analysis of correlation between characteristics of vulnerable intracranial plaque and occurrence and recurrence of ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(4): 16-21. DOI: 10.12015/issn.1674-8034.2023.04.004.
[8]
SHI Z, LI J, ZHAO M, et al. Progression of plaque burden of intracranial atherosclerotic plaque predicts recurrent stroke/transient ischemic attack: A pilot follow-up study using higher-resolution MRI[J]. J Magn Reson Imaging, 2021, 54(2): 560-570. DOI: 10.1002/jmri.27561.
[9]
XU Y, YUAN C, ZHOU Z, et al. Co-existing intracranial and extracranial carotid artery atherosclerotic plaques and recurrent stroke risk: a three-dimensional multicontrast cardiovascular magnetic resonance study[J/OL]. J Cardiovasc Magn Reson, 2016, 18(1): 90 [2023-12-07]. https://doi.org/10.1186/s12968-016-0309-3. DOI: 10.1186/s12968-016-0309-3.
[10]
CHE F, MI D, WANG A, et al. Extracranial carotid plaque hemorrhage predicts ipsilateral stroke recurrence in patients with carotid atherosclerosis - a study based on high-resolution vessel wall imaging MRI[J/OL]. BMC Neurol, 2022, 22(1): 237 [2023-12-07]. https://doi.org/10.1186/s12883-022-02758-3. DOI: 10.1186/s12883-022-02758-3.
[11]
WU G, WANG H, ZHAO C, et al. Large culprit plaque and more intracranial plaques are associated with recurrent stroke: A case-control study using vessel wall imaging[J]. AJNR Am J Neuroradiol, 2022, 43(2): 207-215. DOI: 10.3174/ajnr.A7402.
[12]
KOPCZAK A, SCHINDLER A, SEPP D, et al. Complicated Carotid Artery Plaques and Risk of Recurrent Ischemic Stroke or TIA[J]. J Am Coll Cardiol, 2022, 79(22): 2189-2199. DOI: 10.1016/j.jacc.2022.03.376.
[13]
WANG G C, CHEN Y J, FENG X R, et al. Diagnostic value of HR-MRI and DCE-MRI in unilateral middle cerebral artery inflammatory stenosis[J/OL]. Brain Behav, 2020, 10(9): e01732 [2023-12-07]. https://doi.org/10.1002/brb3.1732. DOI: 10.1002/brb3.1732.
[14]
GUO Y, YANG Y, WANG M, et al. The combination of whole-brain features and local-lesion features in DSC-PWI may improve ischemic stroke outcome prediction[J/OL]. Life (Basel), 2022, 12(11): 1847 [2023-12-07]. https://doi.org/10.3390/life12111847. DOI: 10.3390/life12111847.
[15]
GUO Y, YANG Y, CAO F, et al. A focus on the role of DSC-PWI dynamic radiomics features in diagnosis and outcome prediction of ischemic stroke[J/OL]. J Clin Med, 2022, 11(18): 5364 [2023-12-07]. https://doi.org/10.3390/jcm11185364. DOI: 10.3390/jcm11185364.
[16]
NAM K W, KIM C K, YOON B W, et al. Multiphase arterial spin labeling imaging to predict early recurrent ischemic lesion in acute ischemic stroke[J/OL]. Sci Rep, 2022, 12(1): 1456 [2023-12-07]. https://doi.org/10.1038/s41598-022-05465-8. DOI: 10.1038/s41598-022-05465-8.
[17]
NAM K W, KIM C K, KO S B, et al. Regional arterial spin labeling perfusion defect is associated with early ischemic recurrence in patients with a transient ischemic attack[J]. Stroke, 2020, 51(1): 186-192. https://doi.org/10.1161/STROKEAHA.119.026556. DOI: 10.1161/STROKEAHA.119.026556.
[18]
THAMM T, GUO J, ROSENBERG J, et al. Contralateral hemispheric cerebral blood flow measured with arterial spin labeling can predict outcome in acute stroke[J]. Stroke, 2019, 50(12): 3408-3415. DOI: 10.1161/STROKEAHA.119.026499.
[19]
YU S, MA S J, LIEBESKIND D S, et al. ASPECTS-based reperfusion status on arterial spin labeling is associated with clinical outcome in acute ischemic stroke patients[J]. J Cereb Blood Flow Metab, 2018, 38(3): 382-392. DOI: 10.1177/0271678X17697339.
[20]
LYU J, MA N, TIAN C, et al. Perfusion and plaque evaluation to predict recurrent stroke in symptomatic middle cerebral artery stenosis[J]. Stroke Vasc Neurol, 2019, 4(3): 129-134. DOI: 10.1136/svn-2018-000228.
[21]
SALAHUDDIN H, SAHERWALA A, PINHO M C, et al. Association of distal hyperintense vessel sign and recurrent stroke in patients with symptomatic intracranial stenosis[J/OL]. J Stroke Cerebrovasc Dis, 2022, 31(9): 106616 [2023-12-07]. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106616. DOI: 10.1016/j.jstrokecerebrovasdis.2022.106616.
[22]
NAGARAJA N. Diffusion weighted imaging in acute ischemic stroke: A review of its interpretation pitfalls and advanced diffusion imaging application[J/OL]. J Neurol Sci, 2021, 425: 117435 [2023-12-07]. https://doi.org/10.1016/j.jns.2021.117435. DOI: 10.1016/j.jns.2021.117435.
[23]
ABDUL RASHID A M, MOHD YAAKOB M N, KAMIS M F A, et al. The prominent hypointense vessel sign on susceptibility-weighted imaging (SWI) as a potential imaging biomarker for poor clinical outcome in acute ischemic stroke (AIS)[J]. Radiol Case Rep, 2022, 17(11): 4268-4271. DOI: 10.1016/j.radcr.2022.08.013.
[24]
XIANG W, LIANG Z, ZHANG M, et al. Prognostic value of susceptibility-weighted imaging of prominent veins in acute ischemic stroke: A systematic review and meta-analysis[J/OL]. Front Neurol, 2022, 13: 1052035 [2023-12-07]. https://doi.org/10.3389/fneur.2022.1052035. DOI: 10.3389/fneur.2022.1052035.
[25]
MISHRA B, PANDIT A K, MIYACHI S, et al. Clinical utility of intravascular ultrasound (IVUS) in carotid artery interventions: A systematic review and meta-analysis[J]. J Endovasc Ther, 2022, 29(5): 678-691. DOI: 10.1177/15266028211064824.
[26]
HALAK S, ÖSTLING G, EDSFELDT A, et al. Spotty carotid plaques are associated with inflammation and the occurrence of cerebrovascular symptoms[J]. Cerebrovasc Dis Extra, 2018, 8(1): 16-25. DOI: 10.1159/000485258.
[27]
CASSOLA N, BAPTISTA-SILVA J C, NAKANO L C, et al. Duplex ultrasound for diagnosing symptomatic carotid stenosis in the extracranial segments[J/OL]. Cochrane Database Syst Rev, 2022, 7(7): Cd013172 [2023-12-07]. https://doi.org/10.1002/14651858.CD013172.pub2. DOI: 10.1002/14651858.CD013172.pub2.
[28]
YAN H, WU X, HE Y, et al. Carotid intraplaque neovascularization on contrast-enhanced ultrasound correlates with cardiovascular events and poor prognosis: A systematic review and meta-analysis[J]. Ultrasound Med Biol, 2021, 47(2): 167-176. DOI: 10.1016/j.ultrasmedbio.2020.10.013.
[29]
QI J, LI Q, ZHANG X X, et al. Redictive value of carotid atherosclerotic plaque neovascularization by contrast enhanced ultrasound multimodal imaging for recurrent ischemic stroke[J]. Journal of Vascular and Endovascular Surgery, 2023, 9(02): 220-225. DOI: 10.19418/j.cnki.issn2096-0646.2023.02.20.
[30]
CAMPS-RENOM P, PRATS-SáNCHEZ L, CASONI F, et al. Plaque neovascularization detected with contrast-enhanced ultrasound predicts ischaemic stroke recurrence in patients with carotid atherosclerosis[J]. Eur J Neurol, 2020, 27(5): 809-816. DOI: 10.1111/ene.14157.
[31]
HUANG Z, CHENG X Q, LIU Y N, et al. Value of intraplaque neovascularization on contrast-enhanced ultrasonography in predicting ischemic stroke recurrence in patients with carotid atherosclerotic plaque[J]. Korean J Radiol, 2023, 24(4): 338-348. DOI: 10.3348/kjr.2022.0977.
[32]
SUN F Y, PAN X F, JIA X D, et al. Multimodal ultrasonography combined with clinical data for predicting ischemic stroke or recurrence of transient ischemic attack in patients with carotid atherosclerosis[J]. Chin J Med Imaging Technol, 2022, 38(1): 53-58. DOI: 10.13929/j.issn.1003-3289.2022.01.013.
[33]
CHENG L, ZHENG S, ZHANG J, et al. Multimodal ultrasound-based carotid plaque risk biomarkers predict poor functional outcome in patients with ischemic stroke or TIA[J/OL]. BMC Neurol, 2023, 23(1): 13 [2023-12-07]. https://doi.org/10.1186/s12883-023-03052-6. DOI: 10.1186/s12883-023-03052-6.
[34]
DUNDAMADAPPA S, IYER K, AGRAWAL A, et al. Multiphase CT angiography: A useful technique in acute stroke imaging-collaterals and beyond[J]. AJNR Am J Neuroradiol, 2021, 42(2): 221-227. DOI: 10.3174/ajnr.A6889.
[35]
HUANG K S, QU J X, YUAN Z H, et al. Application of cerebral CT perfusion imaging in assessing the risk of stroke recurrence in patients with symptomatic intiacranial artery stenosis[J]. Journal of Mathematical Medicine, 2021, 34(6): 808-810. DOI: 10.3969/j.issn.1004-4337.2021.06.006.
[36]
KAUW F, GREVING J P, TAKX R A P, et al. Prediction of long-term recurrent ischemic stroke: the added value of non-contrast CT, CT perfusion, and CT angiography[J]. Neuroradiology, 2021, 63(4): 483-490. DOI: 10.1007/s00234-020-02526-5.
[37]
COCKER M S, SPENCE J D, HAMMOND R, et al. [18F]-Fluorodeoxyglucose PET/CT imaging as a marker of carotid plaque inflammation: Comparison to immunohistology and relationship to acuity of events[J]. Int J Cardiol, 2018, 271: 378-386. DOI: 10.1016/j.ijcard.2018.05.057.
[38]
MCCABE J J, CAMPS-RENOM P, GIANNOTTI N, et al. Carotid plaque inflammation imaged by PET and prediction of recurrent stroke at 5 years[J/OL]. Neurology, 2021, 97(23): e2282-e2291 [2023-12-07]. https://doi.org/10.1212/WNL.0000000000012909. DOI: 10.1212/WNL.0000000000012909.
[39]
CAI L L, WANG C, YU K, et al. The value of 18F-FDG uptake of PET/CT incidental carotid plaque in predicting the recurrence of ischemic stroke[J]. J Clin Radiol, 2021, 40(3): 426-430. DOI: 10.13437/j.cnki.jcr.2021.03.005.
[40]
WANG H, SUN Y, ZHU J, et al. Diffusion-weighted imaging-based radiomics for predicting 1-year ischemic stroke recurrence[J/OL]. Front Neurol, 2022, 13: 1012896 [2023-12-07]. https://doi.org/10.3389/fneur.2022.1012896. DOI: 10.3389/fneur.2022.1012896.
[41]
WANG Y, HOU X W, CHEN H S, et al. Prediction of the risk of recurrent ischemic stroke based on intracranial plaque radiomics with traditional biomarkers[J]. Chin J Magn Reson Imaging, 2023, 14(8): 1-9. DOI: 10.12015/issn.1674-8034.2023.08.001.
[42]
WANG H, SUN Y, GE Y, et al. A clinical-radiomics nomogram for functional outcome predictions in ischemic stroke[J]. Neurol Ther, 2021, 10(2): 819-832. DOI: 10.1007/s40120-021-00263-2.
[43]
SIRSAT M S, FERMé E, CâMARA J. Machine learning for brain stroke: A review[J/OL]. J Stroke Cerebrovasc Dis, 2020, 29(10): 105162 [2023-12-07]. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105162. DOI: 10.1016/j.jstrokecerebrovasdis.2020.105162.
[44]
LIEBESKIND D S, SCALZO F. Editorial: Machine learning and decision support in stroke[J/OL]. Front Neurol, 2020, 11: 486 [2023-12-07]. https://doi.org/10.3389/fneur.2020.00486. DOI: 10.3389/fneur.2020.00486.
[45]
GAO Y, LI Z A, ZHAI X Y, et al. An interpretable machine learning model for stroke recurrence in patients with symptomatic intracranial atherosclerotic arterial stenosis[J/OL]. Front Neurosci, 2023, 17: 1323270 [2023-12-07]. https://doi.org/10.3389/fnins.2023.1323270. DOI: 10.3389/fnins.2023.1323270.
[46]
BENZAKOUN J, CHARRON S, TURC G, et al. Tissue outcome prediction in hyperacute ischemic stroke: Comparison of machine learning models[J]. J Cereb Blood Flow Metab, 2021, 41(11): 3085-3096. DOI: 10.1177/0271678X211024371.
[47]
LIU J, WU Y, JIA W, et al. Prediction of recurrence of ischemic stroke within 1 year of discharge based on machine learning MRI radiomics[J/OL]. Front Neurosci, 2023, 17: 1110579 [2023-12-07]. https://doi.org/10.3389/fnins.2023.1110579. DOI: 10.3389/fnins.2023.1110579.
[48]
KACZYNSKI J, SELLERS S, SEIDMAN M A, et al. 18F-NaF PET/MRI for detection of carotid atheroma in acute neurovascular syndrome[J]. Radiology, 2022, 305(1): 137-148. DOI: 10.1148/radiol.212283.
[49]
PROAñO-BERNAL L, GILABERT-GARCíA A, SHARMA-SHARMA S, et al. Positron emission tomography and its role in the assessment of vulnerable plaques in comparison to other imaging modalities[J/OL]. Front Med (Lausanne), 2023, 10: 1293848 [2023-12-07]. https://doi.org/10.3389/fmed.2023.1293848. DOI: 10.3389/fmed.2023.1293848.
[50]
PASARIKOVSKI C R, KU J C, PRIOLA S M, et al. Endovascular optical coherence tomography imaging in cerebrovascular disease[J]. J Clin Neurosci, 2020, 80: 30-37. DOI: 10.1016/j.jocn.2020.07.064.

PREV Advances in the application of DTI-ALPS in brain glymphoid system related neurological diseases
NEXT Research progress of T1 mapping MRI in dilated cardiomyopathy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn